Adiabatic transfer of light in a double cavity and the optical Landau- Zener problem
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Pellizari[Phys. Rev. Lett79, 5242 (1997)has previously proposed transferring photons between two optical cavities by using a STIRAP scheme to control the coupling of atoms in the two ce

to the cavity fields. Here we analyze a variant of his idea and study the evolution of an electromagnetic field inside a double cavity when the difference in length between the two cavities is
e.g. by translating the common mirror. We find that this allows photons to be moved deterministically from one cavity to the other. We are able to obtain the conditions for adiabatic transfe
mapping the Maxwell wave equation for the electric field onto a Schridinger-like wave equation, and then using th2dremdasuilt for the transition probability at an avoided crossing. Our
analysis reveals that this mapping only rigorously holds when the two cavities are weakly coupled (i.e. in the regime of a highly reflective common mirror), and that, generally speaking
required when attemptinghemiltoniandescription of cavity electrodynamics with time-dependent boundary conditions. Preprint available at: arXiv:1105.6071

1. Proposed setup

We consider a double cavity consisting
of two perfectly reflecting mirrors,
separated by a partialljransmissive
common central mirror which can
move. The difference in length between
the two cavities is IL = L-L,
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This setup is similar teptomechanicexperiments at Yale [1,2], except
here the mirror position is controlled, e.g. usipigzcelectric motors
(v~1m/s). Alternatively, the mirror is fixed but the optical length of the two
cavities is changed by making them out of dielectric waveguides whose
refractive indices can be controlled via an electro-optic effect [3].

Mode functions for different mirror
displacements (only neét for transfer.)
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4. Transfer ratio
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7. Comparison of Maxwell and o og
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Schridinger dynamics ;gj
Above procedure leads to OSchridinger-likej
equation for classical amplitudes:
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Panels on right compare dynamics of this equatiof)’
with that of full Maxwell equation. In each parek 1

We therefore see that the reduction holds when o ~ °
o

2. Theoretical model .
To(I+ "#(x)) !Li<x<L

Dielectric permittivity (nirror 1(x) = |
reflectivity is parameterized elsewhere
by ")
. 92 2

Maxwell wave equation ~ 9’E(x.t) | 1+ a8 OPE(xt) _ 0
for electric field ox2 Hozo(1+ ad(x)) o2
Solutions: En(X, 1) = Up(x)exp(! it at) n=1,23...

. _Apsinfkn(x+Ly)] Lyt x" 0
global modes: Un(x) = B sinfkn(x! L2)] 0" x" Ly
wavenumbers: tan(knLo) = tan(ky L)
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5. Time-dependence: the LandauZener problem
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of thediabaticstates.
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(energies of adiabatic states) B.(=2 !2H4+1
Rate at whictdiabatic
energies separate:
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Probability of transition out
of original adiabatic state
t-$->9%)

However, these results are for the Schrsdireggr which is ® order in time.
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8. Regimes of validity o3

The Schrédinger-like equation is
valid when 1, L2
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where wrsr ! 2mc/L is the free spectral 137
range, and is the transmission.
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This condition is plotted as the dashed line on the plot. The adial
condition is plotted as the solid line, and according to the LaAdaer
theory is given by | , T s
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Doppler shift:
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Both conditions are valid in the shaded region of the plot.

3. Anticrossing nets Zoom in:
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Localized wavenumbers—
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6. From Maxwell to Schr3dinger

In order to apply the LandaZenerresult to the classical electromagnetic fie
modes we need to reduce the &der in time Maxwell wave equation to the
1storder in time Schrsdinger equation.

We work in thediabaticbasis: E(x,t) = A (t)¢L (X,t) + Ar(t)dr(X,1)
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Put: Aur (t) =Aur (Dexp —i , fur Mt 1p (=BG "a)Zr 1 212
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But: 1, =10"s 11 {1 /RE/R} 1 4 isthe optical frequency
. [ B . - N " oot ’
Then: Aur = Awr ! 2ilur Aur ! iTur Aur ! 18R Ar exp 1 Tig (t)dt
— A — 0
neglect neglect
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9. Conclusions

#

By displacing the common mirror in a double cavity the electromag
field modes can be swapped from one side to the other. This system
considered as a basic element in a quantum network [4].

Because the mode wavenumbers form a network of avoided crossing
possibility exists to make the transfer adiabatic.

By making a slowly varying envelope approximation the Maxwell w;
equation (24 order in time) can be reduced to a Schridinger-like equa
(1storder in time) for the classical electromagnetic field amplitudes.
The mathematical apparatus of the Landawner theory can then be
applied to the Schrsdinger-like equation in order to obtain the conditio
adiabatic transfer of light.
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