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In quantum gravity, spacetime geometry emerges from some 
underlying d.o.f. 
!

We do not really understand how this works, but entanglement 
plays a key role: 
!

!

!

!

!

!

!

!

!
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!

entanglement?

[Maldacena; Ryu & Takayanagi;  
Van Raamsdonk; Maldacena and Susskind; etc.]
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In particular, in AdS/CFT 
!

Entanglement entropy in CFT  =              in gravity. 
 

!

!

This follows from the rules of AdS/CFT, but is still mysterious. 
!

• Why does this happen in QFT? 

• To what universality class of QFTs does this apply? 

• Can we systematically correct this result?
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Ryu & Takayanagi ’06  
Casini, Huerta, Myers ’12 
Lewkowycz & Maldacena ’13
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I will give some partial answers to these questions in 1+1D 
conformal field theories. 
!

Tools 

• Operator-product expansion (OPE) 

• Large-central-charge expansion 

!
Results 

• Universal contribution to entanglement entropy in a class of excited 
states in 1+1D, strongly interacting, non-rational CFTs 

• Directly related to emergent 3d geometries 

• (Tools for universality at large central charge: “1/c expansion”)
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based mostly on: 
TH ’13 
Asplund, Bernamonti, Galli, TH ’14 



                   1. Introduction                                      2. EE calculation                                       3. Results /23

Large central charge expansion 
!

Consider a 1+1D CFT with: 
!

• central charge                             (“large N”) 

!

• sparse spectrum of low-dimension operators   
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c� 1

eg, Nstates(� < �⇤) = finite as c!1
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!

In 1+1 dimensions: 
Space is a line or circle. Choose a finite interval A:

A

SA = �tr ⇢A log ⇢A

Entanglement entropy
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Goal:  
Compute entanglement entropy for the full system in a 
highly excited pure state.

TH ’13; 
Asplund, Bernamonti, Galli, TH ’14 
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AdS/CFT suggests a simple, universal answer, independent of 
the other details of the CFT:
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A

geodesic lengthholographic 
direction

Ryu & Takayanagi; 
Hubeny, Rangamani, Takayanagi
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The state we consider is a conformal primary state on a circle. 
!

In radial quantization, this is created by inserting a primary 
operator at the origin:
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| i =  (0)|0i

 

To ensure finite “temperature”  
in large-c limit, scale

� = O(c)
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To compute EE, use the replica method:
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Zn = Tr ⇢n
A

SA =

1

1� n
log Zn

����
n!1

 A

Tr ⇢n
A =

 A  A.....

Calabrese & Cardy; etc
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This many-sheeted path integral can be recast as a correlation 
function on a single sheet, 
!

!

!

!

!

       is a `twist operator’ that glues the sheets together. 
!

!

This is useful because there is a lot of technology to compute   
4-point correlators in CFT.
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Tr ⇢n
A = h |��| i

= h0| �� |0i

�
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!

They must have a conformal block expansion:
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�

OPE coefficients

Virasoro Conformal Block

First applied in this context by 
Headrick ’10

Hn =

c

24

(n� 1/n) = dimension of twist operator

h �� i =
X

�

c  �c���

=
X

�

c  �c���|F(�, Hn, z)|2



                   1. Introduction                                      2. EE calculation                                       3. Results /23

In general, this is not universal, and it is hopeless to calculate. 
!

But for central charge                , the Virasoro block simplifies, 
!

!

!

and we expect the vacuum representation to dominate the sum: 
!

!

!

This term includes the contribution from all operators 
constructed from the stress tensor: 
!

!
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c!1

F ⇡ ecf

h �� i ⇡ e2cfvacuum

1, T, @T, T@T, T 2, . . .
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TH ’13; TH, Stoica, Keller ’14

!

Assumptions & Caveats 
!

• Large-c 

• “Sparseness” --> leading order in 1/c, but all orders in the OPE 

• However we have given precise criteria and proved this only for a 
special setup (two intervals in vacuum, n<=2) 

!

This sector of the CFT is dual to the graviton sector of 3d gravity.  
We’ll see it exactly reproduces the universal gravity results.
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We still need to calculate f 
!

!

Briefly: 

• [Zamolodchikov, 80s] Null decoupling equations in Liouville can 
be used to compute f by finding flat SL(2) connections on the CFT 
manifold. 

• Certain special flat SL(2) connections correspond to 3d hyperbolic 
geometries.  

• The vacuum block calculation corresponds exactly to one of these 
special SL(2) connections that is realized in 3d geometry. 

• This reduces the CFT calculation to the calculation of geodesics in 
a 3-dimensional spacetime!
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F ⇡ ecf

BPZ

Faulkner ’13. TH ’13. 
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Exactly the block we need was already calculated (for related 
reasons) by Fitzpatrick, Kaplan, and Walters! 
!

This gives a closed-form answer for the entanglement entropy 
in an excited state. 
!

In the limit n--> 1, the block is exactly equal to the length of a 
geodesic on a 3d defect geometry. 
!

I will discuss the physics of this answer in two situations: 

• Energy eigenstates 

• “Local quench” experiment 
!
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Energy Eigenstates on a Circle 
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`

R

`

SA

RR/2

Saddles exchange 
dominance 
(non-pert. in 1/c)

� ⌘
2⇡p

24h /c� 1
SA =

c
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Holographic dual
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!
Black hole in global AdS

conformal block 
= 

geodesic length
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Comments on thermalization 
!

!

!

!

!

!

!

!

!

!
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`
RR/2

SA

our pure state

thermal (mixed) state

compare: Page theorem
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!

!

Unknown. One situation where we might fail is if the state             
has light operators with large expectation values 
!

!

These large OPE coefficients could affect the saddlepoint 
analysis. 
!

Example: T=0 BPS microstates 
!

This directly relates eigenstate thermalization (on a circle) to 
black hole “hair” / “fuzzballs”.
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| i

h |Olight| i = O(c)

Giusto and Russo ’14

Does l < R/2 answer always thermalize? 
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Application #2: “Local quench experiment”
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Nozaki, Numasawa, Takayanagi ’14; 
Caputa, Nozaki, Takayanagi ’14

Lorentzian cartoon 
!

A

SA(t)

t

| i =  (i✏)|0i

✏! 0
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This state is related to our previous one by a conformal 
transformation. 
!

But conformally mapping into the Lorentzian regime introduces 
a subtlety: operator ordering 
!

!

!

When the dust settles, the height of the “bump” in EE is 
computed by a braiding of the Virasoro vacuum block, 
!

!

!

(This is very roughly a non-rational cousin of the quantum 
dimension in rational CFT.) 
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h |��| i

F(ze2⇡i), z ! 0

cf: Nozaki, Numasawa, Takayanagi ’14; 
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Comparison to holography 

• A holographic model of a local quench was proposed by Nozaki, 
Numasawa, and Takayangi ’13: An infalling particle geometry 

!

!

!

!

!

• This is the holographic dual of our calculation. The infalling 
particle “hits” the boundary at imaginary time  

!

• CFT results agree precisely with geodesic lengths on this 
background. 
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t = i✏
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Conclusions 
!

!

!

!

!

!

!

Some questions 

• 1/c corrections? 

• Including matter? 

• Higher dimensions?

23

Large c expansion 
+ 

Sparse spectrum of low-dimension operators 
==> 

universality and 3d gravity


