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What this talk is not
• (almost) nothing topological

• No gauge fields

• Nothing fractional

• No anyons.  Not even fermions

• No CFT, no bootstrap



What this talk is not
• (almost) nothing topological

• No gauge fields

• Nothing fractional

• No anyons.  Not even fermions

• No CFT, no bootstrap

• Not even a complete solution



What it is about
• I will discuss the simplest example of a 

“frustrated ferromagnet”, and argue that 
there is a simple QFT description of such 
systems, with surprisingly rich 
phenomenology

• It is clear that this description extends to 
higher dimensions and perhaps the 
phenomenology does as well



Outline
• Introduction and phenomena:

• a QCP, and multipolar phases

• QFT: what we need

• Lifshitz NLsM

• Limits and analysis
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Fig. 1. (Color online) Crystal structure of LiCuVO4. Cu-O chains separated by VO4 tetrahedra and

Li+ ions are along the b direction. ∠ Cu-O-Cu ∼ 90◦ indicates the ferromagnetic interaction.

constants and η is Luttinger parameter.9) Recent numerical studies exhibit magnetization vs

J1/J2 phase diagram and the quadrupole phase in fact persists down to rather low magnetic

field.9–11) In addition the phase consists of two states, SDW2 in lower field where ⟨sz0s
z
l ⟩

is dominant and nematic in higher field where ⟨s+0 s
+
1 s

−

l s
−

l+1⟩ is dominant. In both states

transverse two spin correlation is short ranged and decays exponentially.

In most quasi-1D magnet weak interchain interaction induces magnetic LRO at low tem-

perature but it inherits quantum nature. In case of VC phase, spiral order in which the

magnitude of the magnetic moment is strongly suppressed due to quantum fluctuation would

be induced. In case of SDW2, LRO of the longitudinal spin correlation would appear with

propagating wave vector k2 = 2kF .12) The former is a good analogue for classical spin system

but the latter is a totally novel state induced by frustration and quantum fluctuation.

LiCuVO4
13) is one of the model compound for the frustrated ferromagnetic chain. As

shown in Fig. 1 the CuO plaquette forms 1D S = 1/2 chain in the crystallographic b direction.

Considering the bond angle of Cu-O-Cu ∼ 90◦, nearest neighbor interaction is presumed to be

ferromagnetic14, 15) and next nearest neighbor (NNN) interaction be antiferromagnetic(AF).

The magnetic susceptibility showed typical behavior of 1D frustrated magnet, i.e., broad max-

imum due to AF short-range fluctuation at Tmax = 28K16) was observed. At T ≤ TN = 2.3 K

incommensurate magnetic order with propagation vector ksp = (0 0.532 0) was identified.17)

Neutron diffraction elucidates the spiral structure in the ab plane at zero field17) and also at

small field H ≤ 3.5 T.18) The magnetic moment is strongly suppressed as small as 0.25µB
19)

∼ 0.31µB.17) Inelastic neutron scattering showed enhanced spin dispersion in the b∗ direc-

tion and small one in others.20) Exchange parameters have been estimated from independent

experiments including the magnetic dispersion,20) the continuum excitation,21) and magneti-
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NaCuMoO4(OH) as a Candidate Frustrated J1–J2 Chain Quantum Magnet
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In a frustrated J1–J2 chain with the nearest-neighbor ferromagnetic interaction J1 and the next-
nearest-neighbor antiferromagnetic interaction J2, novel magnetic states such as a spin-nematic state
are theoretically expected. However, they have been rarely examined in experiments because of the
difficulty in obtaining suitable model compounds. We show here that the quasi-one-dimensional
antiferromagnet NaCuMoO4(OH), which comprises edge-sharing CuO2 chains, is a good candidate
J1–J2 chain antiferromagnet. The exchange interactions are estimated as J1 = −51 K and J2

= 36 K by comparing the magnetic susceptibility, heat capacity, and magnetization data with the
data obtained using calculations by the exact diagonalization method. High-field magnetization
measurements at 1.3 K show a saturation above 26 T with little evidence of a spin nematic state
expected just below the saturation field, which is probably due to smearing effects caused by thermal
fluctuations and the polycrystalline nature of the sample.

Low-dimensional quantum spin systems with geomet-
rical frustration and/or competing magnetic interactions
have attracted much attention in the field of magnetism.
Low dimensionality, quantum fluctuations, and frustra-
tion are three ingredients that may effectively suppress
conventional magnetic order and lead us to unconven-
tional magnetic order or exotic ground states such as a
quantum spin liquid[1, 2].
A frustrated J1–J2 chain of spin 1/2 defined as

H = J1
∑

l

sl · sl+1 + J2
∑

l

sl · sl+2 − h
∑

l

szl (1)

provides us with an interesting example: the competi-
tion between the nearest-neighbor (NN) ferromagnetic
interaction J1 and the next-nearest-neighbor (NNN) an-
tiferromagnetic interaction J2 causes various quantum
states in magnetic fields h[3–7]. Realized in low fields
is a long-range order of vector chirality defined as (sl ×
sl+n)z (n = 1, 2). As the field increases, spin correlations
change markedly because bound magnon pairs are stabi-
lized by ferromagnetic J1. The bound magnon pairs form
a spin density wave (SDW) in medium fields, whereas, in
high fields just below the saturation of magnetization,
they exhibit Bose–Einstein condensation into quantum
multipolar states[8–11]. One of the multipolar states ex-
pected just below the saturation is a quadrupolar state
of magnon pairs called a spin nematic state, analogous
to nematic liquid crystals.
To explore these quantum states theoretically pre-

dicted for the frustrated J1–J2 chain, many experimen-
tal studies have been performed on quasi-1D compounds

∗ knawa@issp.u-tokyo.ac.jp
† Present address: Department of Applied Physics, Graduate
School of Engineering, Nagoya University, Chikusa, Nagoya 464-
8603, Japan

TABLE I. Candidate compounds for the J1–J2 chain system.
Listed are the nearest-neighbor intrachain interaction J1, the
next-nearest-neighbor interaction J2, the bond angles of Cu-
O-Cu paths for J1, the antiferromagnetic transition temper-
ature at zero field TN, and the saturation field Hs.

Compound J1, J2 ∠ Cu-O-Cu TN Hs

(K) (deg) (K) (T)
Li2ZrCuO4[12, 13] −151, 35 94.1 6.4 -

Rb2Cu2Mo3O12[14, 15] −138, 51 89.9, 101.8 < 2 14
91.9, 101.1

PbCuSO4(OH)2[16–18] −100, 36 91.2, 94.3 2.8 5.4
LiCuSbO4[19] −75, 34 89.8, 95.0 < 0.1 12

92.0, 96.8
LiCu2O2[20–22] −69, 43 92.2, 92.5 22.3 110
LiCuVO4[23–31] −19, 44 95.0 2.1 44.4
NaCuMoO4(OH) −51, 36 92.0, 103.6 0.59 26

such as Li2ZrCuO4[12, 13], Rb2Cu2Mo3O12[14, 15],
PbCu(SO4)(OH)2[16–18], LiCuSbO4[19], LiCu2O2[20–
22], and LiCuVO4[23–31], the key parameters of which
are listed in Table I. These compounds commonly
have edge-sharing CuO2 chains made of CuO6 octahe-
dra. NN Cu spins are magnetically coupled with each
other through two superexchange Cu–O–Cu paths with
approximately 90◦ bond angles, while NNN Cu spins are
coupled through two super-superexchange Cu–O–O–Cu
paths. Thus, according to the Goodenough–Kanamori
rule, J1 should be ferromagnetic while J2 can be antifer-
romagnetic. This is in fact the case for these candidate
compounds, which causes frustration in the J1–J2 chains.

Among these compounds, the most often studied is
LiCuVO4 with J1 = −19 K and J2 = 44 K[25]. It has
been shown using large single crystals that LiCuVO4 ex-
hibits an incommensurate helical order at low fields[25–
29], which may be a 3D analogue of the vector chirality
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We present the phase diagram of the frustrated ferromagnetic S= 1
2 Heisenberg J1−J2 chain in a magnetic

field, obtained by large scale exact diagonalizations and density matrix renormalization group simulations. A
vector chirally ordered state, metamagnetic behavior and a sequence of spin-multipolar Luttinger liquid phases
up to hexadecupolar kind are found. We provide numerical evidence for a locking mechanism, which can drive
spiral states toward spin-multipolar phases, such as quadrupolar or octupolar phases. Our results also shed light
on previously discovered spin-multipolar phases in two-dimensional S= 1

2 quantum magnets in a magnetic
field.
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Spiral or helical ground states are an old and well-
understood concept in classical magnetism,1 and several ma-
terials are successfully described based on theories of spiral
states. For low spin and dimensionality however quantum
fluctuations become important and might destabilize the spi-
ral states. Given that spiral states generally arise due to com-
peting interactions, fluctuations are expected to be particu-
larly strong.

A prominent instability of spiral states is their intrinsic
twist #Si!S j$ !vector chirality".2 It has been recognized that
finite temperature3 or quantum4 fluctuations can disorder the
spin moment #Si$ of the spiral, while the twist remains finite.
Such a state is called p-type spin nematic.5 In the context of
quantum fluctuations such a scenario has been confirmed re-
cently in a ring-exchange model,6 while possible experimen-
tal evidence for the thermal scenario has been presented in.7

The twist also gained attention in multiferroics, since it
couples directly to the ferroelectricity.8

In this Rapid Communication we provide evidence for the
existence of yet a different instability of spiral states toward
spin-multipolar phases. The basic idea is that many spin-
multipolar order parameters are finite in the magnetically
ordered spiral state, but that under a suitable amount of fluc-
tuations the primary spin order is lost, while a spin-
multipolar order parameter survives. We demonstrate this
mechanism based on the magnetic field phase diagram of a
prototypical model, the frustrated S= 1

2 Heisenberg chain
with ferromagnetic nearest-neighbor and antiferromagnetic
next nearest-neighbor interactions. Furthermore we show
that this instability provides a natural and unified understand-
ing of previously discovered two-dimensional spin-
multipolar phases.9,10

To be specific, we determine numerically the phase dia-
gram of the following Hamiltonian:

H = J1%
i

Si · Si+1 + J2%
i

Si · Si+2 − h%
i

Si
z, !1"

and we set J1=−1, J2"0 in the following. Si are spin-1/2
operators at site i, while h denotes the uniform magnetic
field. The magnetization is defined as mª1 /L%iSi

z. We em-

ploy exact diagonalizations !EDs" on systems sizes up to
L=64 sites complemented by density matrix renormalization
group !DMRG" !Ref. 11" simulations on open systems of
maximal length L=384, retaining up to 800 basis states.

The classical ground state of Hamiltonian !1" is ferromag-
netic for J2#1 /4 and a spiral with pitch angle $
=arccos!1 /4J2"! &0,% /2' otherwise. The Lifshitz point is
located at J2=1 /4. In a magnetic field the spins develop a
uniform component along the field, while the pitch angle in
the plane transverse to the field axis is unaltered by the field.

The zero field quantum mechanical phase diagram for
S= 1

2 is still unsettled. Field theoretical work predicts a finite,
but tiny gap accompanied by dimerization12,13 for J2&1 /4,
which present numerical approaches are unable to resolve.
The classical Lifshitz point J2=1 /4 is not renormalized for
S= 1

2 , and the transition point manifests itself on finite sys-
tems as a level crossing between the ferromagnetic multiplet
and an exactly known singlet state.14 The theoretical phase
diagram at finite field has recently received considerable
attention,15–17 triggered by experiments on quasi one-
dimensional cuprate helimagnets.18–20 One of the most pecu-
liar features of the finite size magnetization process is the
appearance of elementary magnetization steps of
'Sz=2,3 ,4 in certain J2 and m regions. This has been attrib-
uted to the formation of bound states of spin flips, leading to
dominant spin-multipolar correlations close to saturation. A
detailed phase diagram is however still lacking.

We present our numerical phase diagram in the J2 / (J1( vs.
m /msat plane in Fig. 1. At least five different phases are
present. The low magnetization region consists of a single
vector chiral phase !gray". Below the saturation magnetiza-
tion we confirm the presence of three different multipolar
Luttinger liquid phases !red, green, and blue". The red phase
extends up to J2→(,16 and its lower border approaches
m=0+ in that limit. All three multipolar liquids present a
crossover as a function of m /msat, where the dominant cor-
relations change from spin-multipolar close to saturation to
spin-density wave !SDW" character at lower magnetization.
One also expects a tiny incommensurate p=2 phase close to
the p=3 phase,17 which we did not aim to localize in this
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field. The magnetization is defined as mª1 /L%iSi

z. We em-

ploy exact diagonalizations !EDs" on systems sizes up to
L=64 sites complemented by density matrix renormalization
group !DMRG" !Ref. 11" simulations on open systems of
maximal length L=384, retaining up to 800 basis states.

The classical ground state of Hamiltonian !1" is ferromag-
netic for J2#1 /4 and a spiral with pitch angle $
=arccos!1 /4J2"! &0,% /2' otherwise. The Lifshitz point is
located at J2=1 /4. In a magnetic field the spins develop a
uniform component along the field, while the pitch angle in
the plane transverse to the field axis is unaltered by the field.

The zero field quantum mechanical phase diagram for
S= 1

2 is still unsettled. Field theoretical work predicts a finite,
but tiny gap accompanied by dimerization12,13 for J2&1 /4,
which present numerical approaches are unable to resolve.
The classical Lifshitz point J2=1 /4 is not renormalized for
S= 1

2 , and the transition point manifests itself on finite sys-
tems as a level crossing between the ferromagnetic multiplet
and an exactly known singlet state.14 The theoretical phase
diagram at finite field has recently received considerable
attention,15–17 triggered by experiments on quasi one-
dimensional cuprate helimagnets.18–20 One of the most pecu-
liar features of the finite size magnetization process is the
appearance of elementary magnetization steps of
'Sz=2,3 ,4 in certain J2 and m regions. This has been attrib-
uted to the formation of bound states of spin flips, leading to
dominant spin-multipolar correlations close to saturation. A
detailed phase diagram is however still lacking.

We present our numerical phase diagram in the J2 / (J1( vs.
m /msat plane in Fig. 1. At least five different phases are
present. The low magnetization region consists of a single
vector chiral phase !gray". Below the saturation magnetiza-
tion we confirm the presence of three different multipolar
Luttinger liquid phases !red, green, and blue". The red phase
extends up to J2→(,16 and its lower border approaches
m=0+ in that limit. All three multipolar liquids present a
crossover as a function of m /msat, where the dominant cor-
relations change from spin-multipolar close to saturation to
spin-density wave !SDW" character at lower magnetization.
One also expects a tiny incommensurate p=2 phase close to
the p=3 phase,17 which we did not aim to localize in this
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Magnon BEC
E-EFM = ε1 + h1-magnon

T. Radu et al, 2007

magnetocaloric effect (MCE) to follow the suppression of
magnetic order by the applied field down to very low
temperatures (50mK). The phase boundary between the
low-field cone ordered phase and the paramagnetic phase
based on MCE is shown in Fig. 5(a). The data determined
from locations of sharp peaks in CðTÞ and minima in the
fields scans of the MCE are shown in Fig. 4. The MCE
effect describes the variation of the sample temperature
upon adiabatically varying the field and anomalies occur
near the phase transitions. For a second-order phase
transition line that ends in a T ¼ 0 quantum critical
point as it is the case here, the change of sign of GB ¼
T$1ðdT=dBÞS at sufficiently low T occurs very close to the
actual phase boundary TcðBÞ [13]; the observed overlap
between the specific heat points of T cðBÞ and location of
the MCE anomaly already at 0.15K (see Fig. 5(a)) shows
that this criterion is well satisfied here.

Since a two parameter fit of the phase boundary data in
Eq. (1) with both Bc and exponent f varying can still be
questioned [7,14], we applied a procedure proposed in [14]
for an independent determination of Bc. The power-law
given above was fitted to the lowest-temperature data
points in a temperature window TpTw of gradually
increasing size for several fixed exponents f. The obtained
critical field values Bc are plotted in Fig. 5(b) as a function

of Tw and their linear extrapolation to Tw ¼ 0 shows good
convergence to Bc ¼ 8:403ð4ÞT (solid lines in Fig. 5(c)).
This value for the critical field was then used in the power-
law fit to the data below 0.17K (over 20 points) and
gave the exponent f ¼ 1:55% 0:05 (solid line in Fig. 5(a)
and (b)), in good agreement with the BEC prediction
of f ¼ 1:5.

4. Conclusions

In conclusion, using thermodynamic and magnetic
measurements, we determined the phase diagram (T , B)
of Cs2CuCl4 along the crystallographic a-axis in detail. The
observed scaling of the critical temperature close to the
saturation field is in good agreement with predictions of 3D
BEC in a dilute gas of magnons. Together with the
observed opening of a spin gap above Bc these findings
support the notion of a BEC of magnons in Cs2CuCl4.
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I. NLSM

A. Classical limit

Let us consider the Non-Linear sigma Model (NLsM)
which should describe the behavior near the Lifshitz
point of the J

1

� J
2

chain. The action in 1+1 dimen-
sions is

S =

Z

dxd⌧
�

isA
B

[m̂]� �|@
x

m̂|2 +K|@2

x

m̂|2

+u|@
x

m̂|4 � hm̂
z

 

. (1)

Here s is the spin and A
B

is the Berry phase term de-
scribing those spins. It can be written in various ways,
for example

A
B

=

Z

1

0

du m̂ · @
⌧

m̂⇥ @
u

m̂, (2)

where we introduce a fictitious auxiliary coordinate u
such that m̂(u = 0) = ẑ and m̂(u = 1) = m̂ is the
physical value, or equivalently,

A
B

=
m̂

1

@
⌧

m̂
2

� m̂
2

@
⌧

m̂
1

1 + m̂
3

. (3)

The main important point for us is that A
B

contains a
single derivative of imaginary time ⌧ .

The action in Eq. (1) needs a condition for stability
against large gradients of m̂. To get it, we note that by
di↵erentiation twice of m̂ · m̂ = 1 we obtain

|@
x

m̂|2 = �m̂ · @2

x

m̂  |@2

x

m̂|, (4)

where the final inequality is obvious. This in turn implies
that |@2

x

m̂|2 > |@
x

m̂|4, which is enough to show stability
is present so long as u + K > 0. This means we may
consider negative u so long as u > �K.

Note that for � < 0, or su�ciently large h, the NLsM
has an exact ferromagnetic ground state, described by
just constant m̂, or a wavefunction of fully polarized
spins. This is a fully classical state. When � > 0 and
h is not too large, however, there will be an incommen-
surate ground state, and thereby quantum fluctuations
will occur. In this regime the NLsM is non-trivial. Nev-
ertheless, we can expect that near the Lifshitz point, at
least on scales that are not too long, a classical descrip-
tion should be correct (we expect that the L ! 1 and
classical limits may not commute, but at least the clas-
sical analysis should lead us to a first understanding).

Can we see this formally somehow? Let us try rescaling
to bring out the behavior for small �. We let x ! p

K/�x
and ⌧ ! K

�

2 ⌧ , where the second rescaling follows from
the linear derivative nature of the Berry phase term. The
magnetization itself does not rescale as m̂ is a unit vector.
Carrying out this rescaling, we find

S =

r

K

�

Z

dxd⌧
�

isA
B

[m̂]� |@
x

m̂|2 + |@2

x

m̂|2

�v|@
x

m̂|4 � hm̂
z

 

, (5)

where we defined v = �u/K and h = hK/�2. We see
that when �/K ⌧ 1, the action is large in dimensionless
terms, and we expect a saddle point approximation to
apply. This is precisely the classical limit! Note that this
is valid when u/K is fixed, and also h ⇠ �2/K, which
fixed the overall field scale of the problem.

B. Saddle point

To find the actual saddle point, we make an assump-
tion that it is of the form of an umbrella state (I tried
also to look for a planar state, but it seemed to be
energetically unfavorable). To avoid having to rescale,
we work in the original variables of Eq. (1). Let m̂ =
(' cos qx,' sin qx,

p

1� '2). Then the action is just the
integral of the energy density

" = ��q2'2 +Kq4'2 + uq4'4 � h(
p

1� '2 � 1), (6)

where we chose to add a constant h factor so that " = 0
when ' = 0. This is easily minimized over wavevector

q2 =
�

2(K + u'2)
, (7)

whence

" = � �2'2

4(K + u'2)
� h(

p

1� '2 � 1). (8)

We can see by direct expansion in a Taylor series in '
that a second order transition is possible for u > �K/4.
For more negative u we can find the first order point
by standard means. There are two conditions. First, a
minimum exists @

'

" = 0, and second, the minimum has
the same energy as the trivial one, "(') = 0. This gives
two conditions which determine the order parameter '
at the transition and the field h at this point. According

two symmetry 
allowed interactions 

at O(q4)

All properties near Lifshitz point obey “one parameter 
universality” dependent upon u/K ratio

• Effective action - NLσM |m̂| = 1
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v derives from quantum fluctuations
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Beyond saddle point
• Issues:

• Fate of ordered saddle points?

• Endpoint of metamagnetic line?

• Multipolar orders?



Zero field
• Saddle point is a spiral phase
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A guess
• Scaling

✏n ⇠ �"2�3n3F(n�1/2, �1/2

" )
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n�1/2 � 1 F(X,Y ) ⇠ 1/X2f(Y )

•  Suggests maximum bound state
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Expect that n-boson bound states bend with 
increasing n to approach continuum line
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Summary
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Lifshitz point is a 
“parent” of many 

phases



Other frustrated 
ferromagnets

• In 1+1d, we could figure out (nearly) 
everything by numerically exact 
methods (DMRG)

• But in d>1, we have fewer tools but 
plenty of experiments



Eg. a frustrated ferrimagnet
volborthite

S =

Z
dxd
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FFM chains

J’ AF

Single crystals of volborthite

0.2 mm

H. Yoshida’s crystal

1. natural leaf crystals, long time ago 
2. low-quality polycrystalline samples by 

precipitation, 2001 
3. high-quality polycrystalline samples by 

hydrothermal annealing, 2009 
4. small single crystals, 2012 
5. large arrowhead-shaped crystals, 2013

Ishikawa’s crystal

1 mm

Hiroi group

same saddle point analysis applies...


