Quantum Lifshitz point and a multipolar cascade for frustrated ferromagnets Leon Balents, KITP, UCSB

Progress and Applications of Modern Quantum Field Theory, Aspen, Feb. 2015

Collaborators

Oleg Starykh U. Utah

Teddy Parker UCSB

What this talk is not

- (almost) nothing topological
- No gauge fields
- Nothing fractional
- No anyons. Not even fermions
- No CFT, no bootstrap

What this talk is not

- (almost) nothing topological
- No gauge fields
- Nothing fractional
- No anyons. Not even fermions
- No CFT, no bootstrap
- Not even a complete solution

What it is about

- I will discuss the simplest example of a "frustrated ferromagnet", and argue that there is a simple QFT description of such systems, with surprisingly rich phenomenology
- It is clear that this description extends to higher dimensions and perhaps the phenomenology does as well

Outline

- Introduction and phenomena:
 - a QCP, and multipolar phases
- QFT: what we need
- Lifshitz NLsM
 - Limits and analysis

Frustrated ferromagnet

1d S=1/2 chain

 $H = J_1 \sum_{i} \mathbf{S}_i \cdot \mathbf{S}_{i+1} + J_2 \sum_{i} \mathbf{S}_i \cdot \mathbf{S}_{i+2} - h \sum_{i} S_i^{z}$

 $J_1 < 0 FM$

Compound	J_1, J_2	\angle Cu-O-Cu	$T_{\rm N}$	$H_{\rm s}$
	(K)	(deg)	(K)	(T)
$Li_2ZrCuO_4[12, 13]$	-151, 35	94.1	6.4	-
$Rb_2Cu_2Mo_3O_{12}[14, 15]$	-138, 51	89.9, 101.8	< 2	14
		91.9, 101.1		
$PbCuSO_4(OH)_2[16-18]$	-100, 36	91.2, 94.3	2.8	5.4
$LiCuSbO_4[19]$	-75, 34	89.8, 95.0	< 0.1	12
		92.0, 96.8		
$LiCu_2O_2[20-22]$	-69, 43	92.2, 92.5	22.3	110
$LiCuVO_4[23-31]$	-19, 44	95.0	2.1	44.4
NaCuMoO ₄ (OH)	-51, 36	92.0, 103.6	0.59	26

J₂>0 AF

LiCuVO₄

Multipolar phases

Multipolar phases

Magnon BEC

1-magnon

 $E-E_{FM} = \epsilon_1 + h$

T. Radu *et al*, 2007

Magnon BEC

 $E-E_{FM} = \epsilon_1 + h$

1-magnon

T. Giamarchi et al, 2008

For d>1 at T=0 this is a molecular BEC = true spin nematic

Hidden order

No dipolar order

$$\begin{split} \langle S_i^z \rangle - M &= 0 \quad \langle S_i^+ S_j^- \rangle \sim e^{-|i-j|/\xi} \\ \langle S_i^\pm \rangle &= 0 \qquad \qquad \mathbf{S}^z \mathbf{=} \mathbf{1} \text{ gap} \end{split}$$

Nematic order

$$\langle S_i^+ S_{i+a}^+ \rangle \neq 0$$

Magnetic quadrupole moment Symmetry breaking U(1) \rightarrow Z₂

can think of a fluctuating fan state

A progression of higher and higher multipolar phases on approaching the QCP!

Is there a QFT that describes this region?

A QFT?

$$\Psi_n \sim \langle \left(S^-\right)^n \rangle$$

- Is this behavior generic?
- Is the cascade infinite, or does it terminate?
- Can a single QFT describe an infinite number of order parameters?
- Is this specific to one dimension?

A QFT?

$$\Psi_n \sim \langle \left(S^- \right)^n \rangle$$

- A strong constraint:
 - Entire green area including the QCP itself has exact trivial FM ground state
 - Not a CFT

Lifshitz Point

• Effective action - NL σ M $|\hat{m}| = 1$

WZW/Berry
phase termtunestwo symmetryQCPallowed interactions $\mathcal{A}_B = \frac{\hat{m}_1 \partial_\tau \hat{m}_2 - \hat{m}_2 \partial_\tau \hat{m}_1}{1 + \hat{m}_2}.$

All properties near Lifshitz point obey "one parameter universality" dependent upon u/K ratio

Lifshitz Point

$$S = \int dx d\tau \left\{ is \mathcal{A}_B[\hat{m}] + \delta |\partial_x \hat{m}|^2 + K |\partial_x^2 \hat{m}|^2 + u |\partial_x \hat{m}|^4 - h \hat{m}_z \right\}$$

• Intuition: behavior near the Lifshitz point should be semi-classical, since "close" to FM state which is classical $x \rightarrow \sqrt{\frac{K}{|\delta|}}x \qquad \tau \rightarrow \frac{K}{\delta^2}\tau$

 $S = \sqrt{\frac{K}{\delta}} \int dx d\tau \left\{ is \mathcal{A}_B[\hat{m}] + \operatorname{sgn}(\delta) |\partial_x \hat{m}|^2 + |\partial_x^2 \hat{m}|^2 + v |\partial_x \hat{m}|^4 - \overline{h} \hat{m}_z \right\}$

 $v = \frac{u}{K}$ $\overline{h} = \frac{hK}{\delta^2}$

Large parameter: saddle point!

Lifshitz point

 $S = \sqrt{\frac{K}{\delta}} \int dx d\tau \left\{ is \mathcal{A}_B[\hat{m}] + \operatorname{sgn}(\delta) |\partial_x \hat{m}|^2 + |\partial_x^2 \hat{m}|^2 + v |\partial_x \hat{m}|^4 - \overline{h} \hat{m}_z \right\}$

v derives from quantum fluctuations

Need it be positive?

 $\hat{m} \cdot \hat{m} = 1 \quad \square \quad \partial_x \hat{m} \cdot \partial_x \hat{m} = -\hat{m} \cdot \partial_x^2 \hat{m} \le |\partial_x^2 \hat{m}|$

Theory is stable for v>-1 In fact, v<0

- Semiclassical large s limit: $v \sim -3/2s$
- s=1/2 exact 2-magnon calculation v = -5/8

 $S = \sqrt{\frac{K}{\delta}} \int dx d\tau \left\{ is \mathcal{A}_B[\hat{m}] + \operatorname{sgn}(\delta) |\partial_x \hat{m}|^2 + |\partial_x^2 \hat{m}|^2 + v |\partial_x \hat{m}|^4 - \overline{h} \hat{m}_z \right\}$

N.B.: at saddle point level there is no scale for δ

Beyond saddle point

- Issues:
 - Fate of ordered saddle points?
 - Endpoint of metamagnetic line?
 - Multipolar orders?

Zero field

• Saddle point is a spiral phase

 $\hat{m}(x) = \hat{e}_1 \cos qx + \hat{e}_2 \sin qx$ $(\hat{e}_1, \hat{e}_2, \hat{e}_3 = \hat{e}_1 \times \hat{e}_2)$ form an SO(3) matrix

 Fluctuations are described by an SO(3) NLsM

$$S_{\rm eff} = \frac{1}{g} \int d^2 x \,\mathrm{Tr} \,\left[(\partial_{\mu} O)^2 \right] + i S_{\rm topo}$$

Zero field

$$S_{\rm eff} = \frac{1}{g} \int d^2 x \,\mathrm{Tr} \,\left[(\partial_\mu O)^2 \right] + i S_{\rm topo}$$

NLsM is asymptotically free

 $gap \\ \Delta \sim e^{-1/g}$

 $\Pi_1(SO(3)) = Z_2 \quad "Z_2 \text{ vortex" instanton}$

S_{topo} carries phase factor (-1)[×] dimerization

Quantum corrections penalize E_{cone} but not E_{FM}

Quantum corrections penalize E_{cone} but not E_{FM}

$$\Delta \mathcal{E}_{\rm cone} = +f(v)\delta^{5/2}$$

$$S = \int dx d\tau \left\{ i s \mathcal{A}_B[\hat{m}] + \delta |\partial_x \hat{m}|^2 + K |\partial_x^2 \hat{m}|^2 + u |\partial_x \hat{m}|^4 - h \hat{m}_z \right\}$$

$$\hat{m} = \sqrt{2 - n_1^2 - n_2^2 (n_1 \hat{e}_1(x) + n_2 \hat{e}_2(x))} + (1 - n_1^2 - n_2^2) \hat{e}_3(x)$$

$$\hat{e}_1 \times \hat{e}_2 = \hat{e}_3 = \hat{m}^{sp}(x)$$

$$\eta = n_1 + in_2 \qquad \overline{\eta} = n_1 - in_2$$

$$S = S_{sp} + \int dx \, d\tau \, \{\overline{\eta}\partial_\tau \eta + H(\overline{\eta}, \eta)\} + O(\eta^3)$$

Bogoliubov transformation gives correction to GS energy

Corrected first order curve bends slightly downward to intersect second order line

Control? $v = -1/4 - \varepsilon$ $\mathcal{E}_{FM} - \mathcal{E}_{\text{cone}}|_{\epsilon_1=0} \sim \varepsilon^3 \delta^2 - \varepsilon^2 \delta^{5/2}$ $\delta_c \sim \varepsilon^2 \ll 1$

What about multi-particle instabilities?

Low density limit

$$\hat{m}^x + i\hat{m}^y = \left(2 - \overline{\psi}\psi\right)^{1/2}\psi \qquad \qquad \hat{m}^z = 1 - \overline{\psi}\psi$$

Low energy $\psi \sim \psi_1 e^{iqx} + \psi_2 e^{-iqx}$

$$\mathcal{L} \sim \overline{\psi}_a (\partial_\tau + h - \frac{\delta^2}{2K} - 4\delta\partial_x^2)\psi_a$$
$$+\gamma_1 [(\overline{\psi}_1\psi_1)^2 + (\overline{\psi}_2\psi_2)^2] + \gamma_2 \overline{\psi}_1\psi_1\overline{\psi}_2\psi_2$$

$$\gamma_1 = \frac{\delta^2}{4K} (1+4v)$$
$$\sim -\varepsilon \delta^2 < 0$$

$$\gamma_2 = \frac{\delta^2}{K} (5 + 4v)$$
$$\sim +\delta^2$$

$$H = -4\delta \sum_{i} \frac{\partial^2}{\partial x_i^2} + 2\gamma_1 \sum_{i < j} \delta(x_i - x_j)$$
$$\gamma_1 \sim -\varepsilon \delta^2 < 0$$

$$\epsilon_n = \epsilon_b \frac{n(n^2 - 1)}{6} \qquad \epsilon_b = -\frac{\gamma_1^2}{8\delta} = -\frac{\varepsilon^2 \delta^3}{8}$$

collapse: bound states have size

$$\ell_n \sim \frac{\delta}{n|\gamma_1|} \sim \frac{1}{n\varepsilon\delta}$$

bound state instabilities dominate

But the bound states cannot get arbitrarily deep - low density approximation is violated

A guess

• Scaling

$$\epsilon_n \sim -\varepsilon^2 \delta^3 n^3 \mathcal{F}(n\delta^{1/2}, \frac{\delta^{1/2}}{\varepsilon})$$

• Matching?

$$n\delta^{1/2} \gg 1$$
 $\mathcal{F}(X,Y) \sim 1/X^2 f(Y)$

• Suggests maximum bound state

$$n_{\rm max} \sim \delta^{-1/2} \sim 1/\varepsilon$$

(at this scale, 3-body interactions enter)

increasing n to approach continuum line

Instabilities

Choose E_{FM}=0

increasing n to approach continuum line

Lifshitz point is a "parent" of many phases

 $S = \int dx d\tau \left\{ is \mathcal{A}_B[\hat{m}] + \delta |\partial_x \hat{m}|^2 + K |\partial_x^2 \hat{m}|^2 + u |\partial_x \hat{m}|^4 - h \hat{m}_z \right\}$

Other frustrated ferromagnets

- In 1+1d, we could figure out (nearly) everything by numerically exact methods (DMRG)
- But in d>1, we have fewer tools but plenty of experiments

Eg. a frustrated ferrimagnet

volborthite

FFM chains

Hiroi group

 $S = \int dx d^{d-1}y d\tau \left\{ is \mathcal{A}_B[\hat{m}] + \delta |\partial_x \hat{m}|^2 + c |\partial_y \hat{m}|^2 + K |\partial_x^2 \hat{m}|^2 + u |\partial_x \hat{m}|^4 - h \hat{m}_z \right\}$

same saddle point analysis applies...

