LOCALITY AND CLASSICAL FIELDS IN ADS, FROM THE BOOTSTRAP

JARED KAPLAN JOHNS HOPKINS UNIVERSITY

BASED ON VARIOUS WORK WITH LIAM FITZPATRICK, DAVID POLAND, DAVID SIMMONS-DUFFIN, MATT WALTERS. & JUNPU WANG

MOTIVATION

Understand the **universal features** of AdS quantum gravity directly from the CFT:

- Fock space? AdS Locality? Long-Range Forces?
- Effective Field Theory description in AdS?
- Classical Field Configurations in AdS?
- Black Hole Microstates Temperature, Blackness...

Which of these require **further assumptions/restrictions** beyond Conformal Symmetry and QM?

CENTRAL CFT QUESTION FOR THIS TALK

What can we say about the CFT Spectrum, OPE coefficients, and correlators assuming only that:

$\mathcal{O}_1, \mathcal{O}_2, T$ with $\mathcal{O}_i(x)\mathcal{O}_i(0) \supset T$

Answer: Quite a bit, all of it with an AdS Interpretation.

ADS/CFT KINEMATICS

ENERGIES AND DIMENSIONS IN ADS/CFT

 $H_{AdS} = D_{CFT}$

REPRESENTATIONS OF GLOBAL CONFORMAL ÅLG

The momentum and special conformal generators act as raising and lowering operators wrt Dimension

$$[D, P_{\mu}] = P_{\mu} \quad [D, K_{\mu}] = -K_{\mu}$$

Irreducible reps built from primaries:

$$[K_{\mu}, \mathcal{O}(0)] = 0 \text{ or } K_{\mu} |\psi_{\mathcal{O}}\rangle = 0$$

Can derive a unitarity relation for $\tau = \Delta - \ell$ $\Delta_s \ge \frac{d}{2} - 1$ and $\tau_\ell \ge d - 2$

CONFORMAL SYMMETRY AND PRIMARY STATES

EXCITED/DESCENDANT STATES

Center of Mass for Excited State $\left(\partial^{2n}\partial_{\mu_1}\cdots\partial_{\mu_\ell}\mathcal{O}\right)|0
ight
angle$ Descendant of a Primary

TWO PARTICLE STATES

 $\psi_{n,\ell}(t_i,\rho_i,\Omega_i)$

Two Particle State, CoM at Origin $\left(\mathcal{O}\partial^{2n}\partial_{\mu_1}\cdots\partial_{\mu_\ell}\mathcal{O}\right)|0\rangle$

'Double-Trace' Primary

LONG-DISTANCE ADS LOCALITY IS COMPLETELY UNIVERSAL

TWO NOTIONS OF LOCALITY

AdS has an intrinsic length scale: R_{AdS}

$$ds^{2} = -\cosh^{2}\left(\frac{\kappa}{R_{AdS}}\right)dt^{2} + d\kappa^{2} + \sinh^{2}\left(\frac{\kappa}{R_{AdS}}\right)d\Omega^{2}$$

Long-Distance Locality: Particles/Systems decouple when separated by $D \gg R_{AdS}$

Micro-Locality: There exists a good Effective Field Theory Description in AdS with $\Lambda_{EFT} \gg \frac{1}{R_{AdS}}$

FORMAL DEFINITION OF LONG-DISTANCE LOCALITY?

Statement about structure of the Hilbert Space: $\mathcal{H}_{AdS} = \mathcal{H}_{CFT} \approx \text{Fock Space}$

A FOCK SPACE AT LARGE SEPARATION

HOW TO DEFINE DISTANT FURBALLS?

AdS

$\kappa \sim R_{AdS} \log \ell$

Geodesic separation between cat & dog:

Are there two furball states at large angular momentum???

TWO FURBALL PHYSICS?

AdS Energy = CFT Dimension: $E_{n\ell} = E_c + E_d + 2n + \ell + \gamma(n, \ell)$

Anomalous dimension, $\gamma(n, \ell)$, is a kind of **`binding energy'**.

Existence of states as $\ell \to \infty$ with vanishing $\gamma(n, \ell)$ implies **AdS Cluster Decomposition**.

GENERAL THEOREM (ANY CFT IN D>2)

Consider OPE of any two scalar primary operators:

$$\mathcal{O}_1(x)\mathcal{O}_2(0) = \sum_{\Delta,\ell} c_{\Delta,\ell}^{12} \mathcal{O}_{\Delta,\ell}(0)$$

For each *n* there exists a tower of operators $\mathcal{O}_{\Delta,\ell}$ with $\Delta = \Delta_1 + \Delta_2 + 2n + \ell + \gamma(n,\ell)$

as $\ell \to \infty$, where the anomalous dimensions $\gamma(n, \ell) \to \frac{\gamma_n}{\ell^{\tau_m}}$ or $\gamma_n e^{-\tau_m \kappa}$

from leading twist exchange, generically $T_{\mu
u}$

THE IDEA OF THE PROOF: A SCATTERING ANALOGY

Free propagation and massless exchange require large amplitude at large ℓ , e.g.

Completely analogous CFT phenomenon. Implies existence of large ℓ states.

Partial Wave Amplitudes -> Conformal Partial Waves

THE CONFORMAL PARTIAL WAVE DECOMPOSITION

Insert 1, organize according to conformal symmetry:

$$\langle \mathcal{O}_1 \mathcal{O}_2 \left(\sum_{\alpha} |\alpha\rangle \langle \alpha| \right) \mathcal{O}_3 \mathcal{O}_4 \rangle$$

Since **operators** = **states** in the CFT, write 4-pt as

A sum over exchange labeled by **primary operators**, magnitude given by product of 3-pt correlators.

LIGHT-CONE OPE LIMIT (DIAGRAMS = BLOCKS)

The equivalent of a t-channel singularity in the CFT is the light-cone OPE limit:

$$\left\langle \mathcal{O}_1 \mathcal{O}_1 \mathcal{O}_2 \mathcal{O}_2 \right\rangle = u^{-\frac{\Delta_1 + \Delta_2}{2}} \left(1 + u^{\frac{\tau_T}{2}} f_T(v) + \cdots \right)$$

giving a bootstrap equation

Example: long-range gravity is completely universal.

MICRO-LOCALITY FOR SPECIAL CFTS

MICRO-LOCALITY (OR FLAT SPACE LOCALITY)

Showed that **All CFTs** have a Fock Space spectrum at long-distances. Would need at **short-distances** too.

To make progress, need **perturbative** expansion. (Our definition is in terms of AdS EFT.)

Both are special features, invalid for most CFTs.

MICRO-LOCALITY (OR FLAT SPACE LOCALITY)

Need a 3rd special feature. Counter-example:

$$\mathcal{L} = \frac{1}{2} (\partial \phi)^2 - \frac{1}{N^2} \left[\lambda \phi^4 + R_{AdS}^4 (\partial \phi)^4 + \cdots \right]$$

To see what went wrong, look at flat space S-Matrix:

$$\mathcal{A} = \frac{1}{N^2} \left(\lambda + R^4 (s^2 + t^2 + u^2) + R^8 s^4 + R^{12} S^6 + \cdots \right)$$

Breaks down at the scale *R*, despite weak coupling. **EFTs well-approximated by polynomial Amplitudes.**

MELLIN SPACE AS ADS MOMENTUM SPACE

Can define Mellin Amplitude for CFT correlator:

$$\langle \mathcal{O}(x_1)\cdots\mathcal{O}(x_4)\rangle \propto \int \frac{dsdt}{(2\pi i)^2}\tilde{M}(s,t)u^{-s}v^{-t}$$

Mellin variables direct analog of Mandelstam s and t.

Mellin Amplitude is `momentum space' for AdS. Asymptotic bounds —> EFT description in AdS.

CLASSICAL ADS FIELDS AND EIKONALIZATION'

MULTIPLE EXCHANGES AND CLASSICAL FIELDS

In any spacetime, effective classical fields emerge from the summation of infinite series of simple diagrams, such as:

Can get Schwarzschild by including interactions.

INTER-RELATED QUESTIONS:

Does the Bootstrap know about the multiple exchanges that build up a classical field in AdS?

Why are Mellin amplitude asymptotics important?

Can we take $\frac{1}{\ell}$ perturbation theory further?

How far can we go with no assumption except: $\mathcal{O}_1, \ \mathcal{O}_2, \ T \quad \text{with} \quad \mathcal{O}_i(x)\mathcal{O}_i(0) \supset T$

A BOOTSTRAP IMPLICATION

On the right-hand side, $[\mathcal{O}_1\mathcal{O}_2]_{n,\ell}$ anomalous dim:

$$g_{\tau,\ell}(v,u) \approx \left(1 + \frac{\gamma_n}{2\ell^{\tau_m}} \ln v + \frac{\gamma_n^2}{8\ell^{2\tau_m}} \ln^2 v + \cdots\right) g_{\tau_n,\ell}(v,u)$$

How can we match this on the left-hand side?

Not obvious because Bootstrap is `on-shell'.

BE FRUITFUL AND MULTIPLY...

Fock Space Theorem implies existence of: $[\mathcal{O}_1\mathcal{O}_2]_{n,\ell}, \ [\mathcal{O}_1T]_{n,\ell}, \ [TT]_{n,\ell}, \ \cdots, \ [[\mathcal{O}_1\mathcal{O}_1]_{n,\ell}T]_{n',\ell'}, \cdots$ So at large spin, we are allowed to ask about: \mathcal{O}_2 \mathcal{O}_1 T \mathcal{O}_2 \mathcal{O}_1

A NEEDED OPE LIMIT

We would like to use the OPE to deduce at large spin:

Without further assumptions, ill-defined!!

Cross-channel OPE limits of Blocks do not exist.

A NEEDED OPE LIMIT

Need to expand a function such as

$$_{2}F_{1}(1, 1, 2, z) = -\frac{\log(1-z)}{z}$$

INCAL

One reason why crossing symmetry so non-trivial!

NEEDED OPE LIMIT, UNDERSTOOD FROM MELLIN

Toy example:
$$G(z) = \int_{-i\infty}^{i\infty} M(\delta) z^{-\delta} d\delta$$

Both OPE limits, z = 0 and z = 1 can be studied simultaneously.

Behavior near z = 0 determined by poles.

Behavior near z = 1 determined by asymptotics.

A NEEDED OPE LIMIT, UNDERSTOOD VIA MELLIN

Pathology due to bad asymptotic behavior.

Result controlled by leading Mellin pole, which gives the **universal behavior** expected from the bootstrap equation.

FOR ANY CFT, CONFORMAL BLOCKS CAN BE SUMMED

If Mellin Amplitude is exponentially bounded, we can sum or `Eikonalize' the conformal blocks:

AdS QFT aka 1/N Perturbation Theory is a special case.

FOR ANY CFT, CONFORMAL BLOCKS CAN BE SUMMED

In the limit $\tau_T \ll \Delta_1, \Delta_2$

$$e^{c_{11}^T c_{22}^T g_T(u,v)}$$

Block `eikonalizes'. Beyond this limit, more general series.

FUTURE DIRECTIONS AND CONCLUSIONS

CONCLUSIONS

- Long-Range AdS Locality Completely General
- Eikonalization can be seen directly in the bootstrap
- Relation between Eikonalization/Classical Fields and Short-Range locality
- Can begin to improve large spin expansion

FUTURE DIRECTIONS: PHYSICS OF CFT SPECTRA

Need to develop and apply new techniques to understand the full CFT spectrum.

EXTRA SLIDES

WHAT IS THE BOOTSTRAP?

- Conformal Symmetry
- Unitarity
- Crossing Symmetry

What can we learn from the fundamental principles?

CONSIDER THE 4-PT CFT CORRELATORS

Recall that 4-pt correlators can be written

$$\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4)\rangle = \frac{A(u,v)}{(x_{13}^2x_{24}^2)^{\Delta_{\phi}}}$$

where the conformal cross-ratios are

$$u = \left(\frac{x_{12}^2 x_{34}^2}{x_{24}^2 x_{13}^2}\right), \qquad v = \left(\frac{x_{14}^2 x_{23}^2}{x_{24}^2 x_{13}^2}\right)$$

We can use elementary quantum mechanics to rewrite this in a different way...

FORMULATE CFT BOOTSTRAP

Crossing symmetry gives the Bootstrap Equation: $\frac{1}{(x_{12}^2 x_{34}^2)^{\Delta_{\phi}}} \sum_{\mathcal{O}} P_{\mathcal{O}} g_{\tau_{\mathcal{O}},\ell_{\mathcal{O}}}(u,v) = \frac{1}{(x_{14}^2 x_{23}^2)^{\Delta_{\phi}}} \sum_{\mathcal{O}} P_{\mathcal{O}} g_{\tau_{\mathcal{O}},\ell_{\mathcal{O}}}(v,u)$ $\int_{k} \int_{\phi_{2}}^{\phi_{1}} \int_{\phi_{k}}^{\phi_{4}} \int_{f_{34k}}^{\phi_{4}} = \sum_{k} \int_{\phi_{2}}^{\phi_{1}} \int_{f_{23k}}^{f_{14k}} \int_{\phi_{3}}^{\phi_{4}} Unitarity:$ $P_{\mathcal{O}} = f^{2} > 0$

WHAT'S SO GREAT ABOUT MELLIN ÅMPLITUDES?

- Mellin Space is `Momentum Space for CFTs'
- Use **complex analysis** to study CFTs. Mellin Amplitudes always **meromorphic**
- Mellin Amplitude Factorizes on CFT States
- Algebraic Feynman Rules for AdS/CFT
- In Flat Space Limit of AdS/CFT: Mellin Amplitude becomes S-Matrix, CFT Bootstrap gives Optical Theorem, meromorphy becomes analyticity