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Motivation

Understand the universal features !
of AdS quantum gravity directly from the CFT:

• Fock space?  AdS Locality?  Long-Range Forces?!
• Effective Field Theory description in AdS?!
• Classical Field Configurations in AdS?!
• Black Hole Microstates - Temperature, Blackness…

Which of these require further assumptions/restrictions!
beyond Conformal Symmetry and QM?



Central CFT Question 
for This Talk
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Figure 2. This figure indicates conformal partial waves that necessarily contribute to two di↵erent
4-pt CFT correlators, based on the assumed OPEs. We indicate the conformal block on the left as
O1T ! O1 ! O1T .

A CFT Sandbox

To discuss the details, we will be making extensive use of the idea of conformal partial

waves, also known as conformal blocks, and the CFT bootstrap equation. These were

briefly reviewed in a relevant context in [] and in many other recent works []. We seek

to understand if the conformal partial waves associated with the exchange of a full Fock

space can be resummed or ‘eikonalized’ into an exponential form. Directly on the AdS side,

these issues have been explored [] at high energy with fixed impact parameter, leading to

an AdS version of the Eikonal limit. In the case of CFT2 the resummation of stress tensor

exchange [] has already been observed, but we will see that the general story is more subtle.

For our purposes it will be su�cient to study just a few primary operators in a general

CFT
d

, which we refer to as

O1, O2, T with O
i

(x)O
i

(0) � T (1.2)

where by � we mean ‘is included in the OPE’. We use �1, �2, �
T

to refer to the dimensions

of these operators, and ⌧

i

and ⌧

T

to refer to their twists ⌧ ⌘ � � `. We will be thinking

of T as a low dimension or ‘light’ operator, such as the stress tensor, and O
i

as heavier

sources. The indicated OPE immediately implies that certain specific conformal partial

waves must contribute to correlators such as hO1O1TT i and hO1O1O2O2i, as pictured in

figure 2.

The theorem [] referred to above states that in the OPE A(x)B(0) of any two primary

operators there exist new primaries [AB]
n,`

labeled by positive integers n, ` at large `, with

dimension �
A

+ �
B

+ 2n + ` + �(n, `), where the anomalous dimension �(n, `) ! 0 as

` ! 1 at a prescribed power-law rate. This immediately implies the existence of operators

such as

[O1O2]
n,`

, [O1T ]
n,`

, [TT ]
n,`

, · · · , [[O1O1]
n,`

T ]
n

0
,`

0 , · · · (1.3)

for all posible combinations at large `. Applying the theorem recursively leads to a Fock
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What can we say about the CFT Spectrum, OPE 
coefficients, and correlators assuming only that:

Answer: Quite a bit, all of it !
with an AdS Interpretation.



!

!

AdS/CFT  
Kinematics
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Figure 1: This figure shows how the AdS cylinder in global coordinates corresponds to the
CFT in radial quantization. The time translation operator in the bulk of AdS is the Dilatation
operator in the CFT, so energies in AdS correspond to dimensions in the CFT.fig:AdSCylinderIntro

for general scalar theories at tree-level and for ⇥4 theory at one-loop. Recently we [2] verified
the conjecture for n-pt amplitudes in general scalar theories at tree-level by showing that our
diagrammatic rules for the Mellin amplitude reduce to the usual Feynman rules in the flat space
limit. By setting up the appropriate scattering experiment [10, 11, 12, 13] in AdS and making
gratuitous use of the stationary phase approximation, we will derive Penedones’ conjecture in
section 2.

Why is the Mellin amplitude related to the flat-space S-matrix? A key point is that
the Dilatation operator in the CFT generates global time translations in AdS, as pictured
in figure 1. In other words, the energy of particles in AdS is given by the dimension of a
CFT operator (or CFT state – we are freely making use the operator-state correspondence).
So aside from their manifest similarity in a large class of examples, one can understand the
relationship between Mellin and scattering amplitudes by thinking about which states in the
CFT correspond to scattering processes in AdS. CFT states dual to AdS particles with energies
parametrically larger than the AdS curvature scale correspond to primary operators with
very large scaling dimension. The �ij’s in the Mellin amplitude correspond to relative scaling
dimensions, so scattering states localize the Mellin amplitude on large �ij’s related to the energy
and momentum of the physical scattering process. We will show how to make this argument
precise by directly extracting scattering states from the correlation functions of n single-trace
operators, written in the Mellin representation. For scattering momenta pi large compared to

2

HAdS = DCFT

Energies and Dimensions 
in AdS/CFT



Representations of 
Global Conformal Alg

The momentum and special conformal generators act as 
raising and lowering operators wrt Dimension

[D,Pµ] = Pµ [D,Kµ] = �Kµ

Irreducible reps built from primaries:

[Kµ,O(0)] = 0 or Kµ| Oi = 0

Can derive a unitarity relation for ⌧ = �� `

�s �
d

2
� 1 and ⌧` � d� 2



Conformal Symmetry 
and Primary States

AdS CFT

CoM of Ground State CFT Primary State



Center of Mass !
for Excited State

Descendant of a!
Primary

AdS CFT

 n,`(t, ⇢,⌦)
�
@2n@µ1 · · · @µ`O

� |0i

Excited/Descendant 
States



Two Particle State,!
CoM at Origin `Double-Trace’ Primary

Two Particle States

AdS CFT

�O@2n@µ1 · · · @µ`O
� |0i n,`(ti, ⇢i,⌦i)
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Long-Distance 
AdS Locality 
is Completely 

Universal



Two Notions of Locality

Long-Distance Locality:   Particles/Systems 
decouple when separated by !
!

Micro-Locality:  There exists a good Effective Field 
Theory Description in AdS with

D � RAdS

⇤EFT � 1

RAdS

AdS has an intrinsic length scale: RAdS

ds2 = � cosh

2

✓


RAdS

◆
dt2 + d2

+ sinh

2

✓


RAdS

◆
d⌦2



Formal Definition of 
Long-Distance Locality?

HAdS = HCFT ⇡ Fock Space

Statement about structure of the Hilbert Space:

 d = c =

=) 9  cd =



A Fock Space 
at Large Separation



How to Define 
Distant Furballs?

AdS
Geodesic separation between cat & dog:

Are there two furball states at!
large angular momentum???

 ⇠ RAdS log `



Two Furball Physics?

AdS
AdS Energy = CFT Dimension:

Existence of states as               with vanishing!
             implies AdS Cluster Decomposition.

Anomalous dimension,           ,!
is a kind of `binding energy’.

�(n, `)

En` = Ec + Ed + 2n+ `+ �(n, `)

�(n, `)

` ! 1



General Theorem 
(Any CFT in d>2)

Consider OPE of any two scalar primary operators:

For each     there exists a tower of operatorsn

O�,` with � = �1 +�2 + 2n+ `+ �(n, `)

�(n, `) ! �n
`⌧m

or �ne
�⌧m

as              , where the anomalous dimensions

from leading twist exchange, generically Tµ⌫

` ! 1

O1(x)O2(0) =
X

�,`

c

12
�,`O�,`(0)



The Idea of the Proof: 
A Scattering Analogy
Free propagation and massless exchange!
require large amplitude at large    , e.g.

Partial Wave Amplitudes -> Conformal Partial Waves

`

Completely analogous CFT phenomenon.!
Implies existence of large      states.`

1

1� cos ✓
⇡ X

`!1
P`(cos ✓)



The Conformal Partial 
Wave Decomposition

Since operators = states in the CFT, write 4-pt as

=
X

↵

O↵

Insert    , organize according to conformal symmetry:

hO1O2

 
X

↵

|↵ih↵|
!
O3O4i

1

A sum over exchange labeled by primary operators,!
magnitude given by product of 3-pt correlators.



Light-Cone OPE Limit 
(Diagrams = Blocks)

The equivalent of a t-channel singularity!
in the CFT is the light-cone OPE limit:

giving a bootstrap equation

Example: long-range gravity is completely universal.

hO1O1O2O2i = u��1+�2
2

⇣
1 + u

⌧T
2 fT (v) + · · ·

⌘
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O1
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O2

O2

O2

O1

O1

O2

O2

[O1O2]n,`

X

`!1
⇡T +

O1

O1

O2

O2

X

n,`

[TT ]n,`
+ · · ·+1

O1

O1

O1

O1
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X

`!1
⇡T +

O1
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X

n,`

[TT ]n,`
+ · · ·
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Micro-Locality 
for  

Special CFTs



Micro-Locality 
(or flat space locality)

Showed that All CFTs have a Fock Space spectrum!
at long-distances.  Would need at short-distances too.

To make progress, need perturbative expansion.!
(Our definition is in terms of AdS EFT.)

Both are special features, invalid for most CFTs.



Micro-Locality 
(or flat space locality)

L =
1

2
(@�)2 � 1

N2

⇥
��4 +R4

AdS(@�)
4 + · · ·

⇤

Need a 3rd special feature.  Counter-example:

To see what went wrong, look at flat space S-Matrix:

A =
1

N2

�
�+R4(s2 + t2 + u2) +R8s4 +R12S6 + · · ·

�

Breaks down at the scale     , despite weak coupling.R

EFTs well-approximated by polynomial Amplitudes.



Mellin Space 
as AdS Momentum Space

Can define Mellin Amplitude for CFT correlator:

Mellin variables direct analog of Mandelstam s and t.

Mellin Amplitude is `momentum space’ for AdS.!
Asymptotic bounds —> EFT description in AdS.

hO(x1) · · · O(x4)i /
Z

dsdt

(2⇡i)2
M̃(s, t)u�s

v

�t
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Classical AdS 
Fields and 

`Eikonalization’



Multiple Exchanges and 
Classical Fields

T TTT

O1O1

In any spacetime, effective classical fields!
emerge from the summation of infinite!

series of simple diagrams, such as:

=) V (r) =
GM

rd�2

Can get Schwarzschild by including interactions.



Inter-related 
Questions:

Does the Bootstrap know about the multiple exchanges !
that build up a classical field in AdS?!
!

Why are Mellin amplitude asymptotics important?!
!

Can we take       perturbation theory further?!
!

How far can we go with no assumption except:!
!
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Figure 2. This figure indicates conformal partial waves that necessarily contribute to two di↵erent
4-pt CFT correlators, based on the assumed OPEs. We indicate the conformal block on the left as
O1T ! O1 ! O1T .

A CFT Sandbox

To discuss the details, we will be making extensive use of the idea of conformal partial

waves, also known as conformal blocks, and the CFT bootstrap equation. These were

briefly reviewed in a relevant context in [] and in many other recent works []. We seek

to understand if the conformal partial waves associated with the exchange of a full Fock

space can be resummed or ‘eikonalized’ into an exponential form. Directly on the AdS side,

these issues have been explored [] at high energy with fixed impact parameter, leading to

an AdS version of the Eikonal limit. In the case of CFT2 the resummation of stress tensor

exchange [] has already been observed, but we will see that the general story is more subtle.

For our purposes it will be su�cient to study just a few primary operators in a general

CFT
d

, which we refer to as

O1, O2, T with O
i

(x)O
i

(0) � T (1.2)

where by � we mean ‘is included in the OPE’. We use �1, �2, �
T

to refer to the dimensions

of these operators, and ⌧

i

and ⌧

T

to refer to their twists ⌧ ⌘ � � `. We will be thinking

of T as a low dimension or ‘light’ operator, such as the stress tensor, and O
i

as heavier

sources. The indicated OPE immediately implies that certain specific conformal partial

waves must contribute to correlators such as hO1O1TT i and hO1O1O2O2i, as pictured in

figure 2.

The theorem [] referred to above states that in the OPE A(x)B(0) of any two primary

operators there exist new primaries [AB]
n,`

labeled by positive integers n, ` at large `, with

dimension �
A

+ �
B

+ 2n + ` + �(n, `), where the anomalous dimension �(n, `) ! 0 as

` ! 1 at a prescribed power-law rate. This immediately implies the existence of operators

such as

[O1O2]
n,`

, [O1T ]
n,`

, [TT ]
n,`

, · · · , [[O1O1]
n,`

T ]
n

0
,`

0 , · · · (1.3)

for all posible combinations at large `. Applying the theorem recursively leads to a Fock
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A Bootstrap Implication

+1
O1

O1

O1

O1
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O2

O2

O2

O1

O1

O2

O2

[O1O2]n,`

X

`!1
⇡T +

O1

O1

O2

O2

X

n,`

[TT ]n,`
+ · · ·

3.1 Corrections Due to Large ` Double-Trace Operators [TT ]
n,`

Let’s again consider the anomalous dimensions of the double-trace operators [O1O2]
n,`

at large `, which arise due to the minimal twist operators present in the OPE of both

O1(x)O1(0) and O2(x)O2(0). The resulting shift in scaling dimension can then be written

in the approximate form

�(n, `) ⇡ �

n

`

⌧m
, (3.1)

where ⌧

m

is the minimal twist of these exchanged operators. Using this form, it is clear

that at large ` we can expand the [O1O2]
n,`

conformal blocks as a perturbative series in

�(n, `),

g

⌧,`

(v, u) ⇡
✓

1 +
�

n

2`

⌧m
ln v +

�

2
n

8`

2⌧m
ln2

v + · · ·
◆

g

⌧n,`(v, u) (` � 1). (3.2)

As discussed above, the first term in this series reproduces the s-channel contribution from

the identity, while the second term contains a logarithmic singularity at small v which

matches that of the minimal twist conformal blocks. For the sake of simplicity, we shall

again assume that there is only one such minimal twist operator T .

Turning to the third term in this series, we see that it possesses a stronger singularity

as v ! 0 than any single s-channel conformal block. There must therefore be an infinite

tower of additional operators to replicate this subleading correction. This is suggested in

figure 4.

Before we determine the properties of this infinite set of s-channel conformal blocks,

we first need to determine the full form of this subleading correction. In the lightcone OPE

limit u ⌧ v ⌧ 1, the large ` t-channel conformal blocks can be written as []

g

⌧,`

(v, u) ⇡ v

⌧
2
u

1
2�122⌧+2`

r
`

⇡

K�12(2`

p
u) (u ⌧ v ⌧ 1), (3.3)

where K

x

(y) is a modified Bessel function.

As ` ! 1, the conformal block coe�cients for these double-trace operators [O1O2]
n,`

approach those of a generalized free theory, with the asymptotic form

P

⌧,`

⇡ 4
p

⇡

�(�1)�(�2)2⌧+2`
`

�1+�2� 3
2
. (3.4)

Using these results, we can then rewrite the sum of subleading terms as

X

n,`

P

⌧n,`

✓
�

2
n

8`

2⌧m
ln2

v

◆
g

⌧n,`(v, u) ⇡ u

1
2�12 ln2

v

2�(�1)�(�2)

X

n,`

�

2
n

v

⌧n
2

K�12(2`

p
u)

`

2⌧m��1��2+1
. (3.5)

For small v, the dominant contribution to this sum is from the conformal blocks with n = 0,

such that we can ignore the double-trace operators with higher twist. Approximating the
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On the right-hand side,                   anomalous dim:

3.1 Corrections Due to Large ` Double-Trace Operators [TT ]
n,`

Let’s again consider the anomalous dimensions of the double-trace operators [O1O2]
n,`

at large `, which arise due to the minimal twist operators present in the OPE of both

O1(x)O1(0) and O2(x)O2(0). The resulting shift in scaling dimension can then be written

in the approximate form

�(n, `) ⇡ �

n

`

⌧m
, (3.1)

where ⌧

m

is the minimal twist of these exchanged operators. Using this form, it is clear

that at large ` we can expand the [O1O2]
n,`

conformal blocks as a perturbative series in

�(n, `),

g

⌧,`

(v, u) ⇡
✓

1 +
�

n

2`

⌧m
ln v +

�

2
n
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v + · · ·
◆

g
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As discussed above, the first term in this series reproduces the s-channel contribution from

the identity, while the second term contains a logarithmic singularity at small v which

matches that of the minimal twist conformal blocks. For the sake of simplicity, we shall

again assume that there is only one such minimal twist operator T .

Turning to the third term in this series, we see that it possesses a stronger singularity

as v ! 0 than any single s-channel conformal block. There must therefore be an infinite

tower of additional operators to replicate this subleading correction. This is suggested in

figure 4.

Before we determine the properties of this infinite set of s-channel conformal blocks,

we first need to determine the full form of this subleading correction. In the lightcone OPE

limit u ⌧ v ⌧ 1, the large ` t-channel conformal blocks can be written as []

g
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(v, u) ⇡ v

⌧
2
u

1
2�122⌧+2`

r
`

⇡

K�12(2`

p
u) (u ⌧ v ⌧ 1), (3.3)

where K

x

(y) is a modified Bessel function.

As ` ! 1, the conformal block coe�cients for these double-trace operators [O1O2]
n,`

approach those of a generalized free theory, with the asymptotic form

P

⌧,`

⇡ 4
p

⇡

�(�1)�(�2)2⌧+2`
`

�1+�2� 3
2
. (3.4)

Using these results, we can then rewrite the sum of subleading terms as

X

n,`
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✓
�

2
n
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ln2

v

◆
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⌧n,`(v, u) ⇡ u
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2�12 ln2

v

2�(�1)�(�2)

X
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�

2
n
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2
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p
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`
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For small v, the dominant contribution to this sum is from the conformal blocks with n = 0,

such that we can ignore the double-trace operators with higher twist. Approximating the
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How can we match this on the left-hand side?

Not obvious because Bootstrap is `on-shell’.
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Figure 2. This figure indicates conformal partial waves that necessarily contribute to two di↵erent
4-pt CFT correlators, based on the assumed OPEs. We indicate the conformal block on the left as
O1T ! O1 ! O1T .

A CFT Sandbox

To discuss the details, we will be making extensive use of the idea of conformal partial

waves, also known as conformal blocks, and the CFT bootstrap equation. These were

briefly reviewed in a relevant context in [] and in many other recent works []. We seek

to understand if the conformal partial waves associated with the exchange of a full Fock

space can be resummed or ‘eikonalized’ into an exponential form. Directly on the AdS side,

these issues have been explored [] at high energy with fixed impact parameter, leading to

an AdS version of the Eikonal limit. In the case of CFT2 the resummation of stress tensor

exchange [] has already been observed, but we will see that the general story is more subtle.

For our purposes it will be su�cient to study just a few primary operators in a general

CFT
d

, which we refer to as

O1, O2, T with O
i

(x)O
i

(0) � T (1.2)

where by � we mean ‘is included in the OPE’. We use �1, �2, �
T

to refer to the dimensions

of these operators, and ⌧

i

and ⌧

T

to refer to their twists ⌧ ⌘ � � `. We will be thinking

of T as a low dimension or ‘light’ operator, such as the stress tensor, and O
i

as heavier

sources. The indicated OPE immediately implies that certain specific conformal partial

waves must contribute to correlators such as hO1O1TT i and hO1O1O2O2i, as pictured in

figure 2.

The theorem [] referred to above states that in the OPE A(x)B(0) of any two primary

operators there exist new primaries [AB]
n,`

labeled by positive integers n, ` at large `, with

dimension �
A

+ �
B

+ 2n + ` + �(n, `), where the anomalous dimension �(n, `) ! 0 as

` ! 1 at a prescribed power-law rate. This immediately implies the existence of operators

such as

[O1O2]
n,`

, [O1T ]
n,`

, [TT ]
n,`

, · · · , [[O1O1]
n,`

T ]
n

0
,`

0 , · · · (1.3)

for all posible combinations at large `. Applying the theorem recursively leads to a Fock
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Be Fruitful and 
Multiply…

Fock Space Theorem implies existence of:

+1
O1

O1

O1

O1

O2

O2

O2

O2

O1

O1

O2

O2

[O1O2]n,`

X

`��
⇡

T

+

O1

O1

O2

O2

X

n,`

[TT ]n,`

+ · · ·

Figure 4. This figure illustrates terms that contribute to the lightcone OPE limit of the CFT
bootstrap equation. The consequence of the first two terms on the left-hand side are reviewed in
section 2, while the third term and its generalizations are discussed using this bootstrap equation
in section 3.

where ⌧

m

and `

m

are respectively the twist and spin of the minimal twist operator T . This

conformal block therefore introduces a logarithmic singularity at small v which must be

replicated by the t-channel.

To see how this singularity is reproduced, note that the t-channel conformal blocks

can be written as g

⌧,`

(v, u) = v

⌧
2
f

⌧,`

(v, u), where f

⌧,`

is finite as v ! 0. At large `, we

know that the spectrum of t-channel blocks approaches that of the double-trace operators

[O1O2]
n,`

, with the associated twists

⌧(n, `) = �1 + �2 + 2n + �(n, `), (2.8)

where the anomalous dimensions �(n, `) ! 0 as ` ! 1.

Given this asymptotic behavior, at large ` we can expand the t-channel conformal

blocks as a power series in �(n, `), obtaining

g

⌧,`

(v, u) ⇡
✓

1 +
�(n, `)

2
ln v

◆
v

⌧n
2

f

⌧n,`(v, u) (` � 1). (2.9)

The anomalous dimensions of double-trace operators therefore provide the logarithmic

singularities necessary to match the small v behavior of minimal twist conformal blocks.

As discussed more thoroughly in [], we can carefully match the u- and v-dependence of

both sides to precisely fix the anomalous dimensions at large `. For example, the resulting

anomalous dimensions for n = 0 are

�(0, `) ⇡ � 2P

T

�(�1)�(�2)�(⌧
m

+ 2`

m

)

�(�1 � ⌧m
2 )�(�2 � ⌧m

2 )�2( ⌧m2 + `

m

)

✓
1

`

⌧m

◆
. (2.10)

The anomalous dimensions therefore vanish as ` ! 1 at a rate set by the twist of the

exchanged operator T . This behavior is consistent with the AdS interpretation of these

anomalous dimensions as interaction energies between distant objects.

We also see more explicitly the sense in which CFTs are weakly-coupled at large `.

The corrections to scaling dimensions and OPE coe�cients which arise from the exchange

of ‘light’ operators with low twist must vanish as ` ! 1, therefore introducing the new

perturbative parameter 1
`

. By continuing the expansion of eq. (2.9) to higher orders, we

can then begin to study subleading corrections due to operators with larger twist.
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So at large spin, we are allowed to ask about:



A Needed OPE Limit

We would like to use the OPE to deduce at large spin:

Without further assumptions, ill-defined!!!
!

Cross-channel OPE limits of Blocks do not exist.

T
O1

T

O1

O1 O1

O1

!? [TT ]n,`

O1

T

O1

!



A Needed OPE Limit

T
O1

T

O1

O1 O1

O1

!? [TT ]n,`

O1

T

O1

!

Need to expand a function such as

2F1(1, 1, 2, z) = � log(1� z)

z

Near z = 1

One reason why crossing symmetry so non-trivial!



Needed OPE Limit, 
Understood from Mellin

Toy example:

Both OPE limits,                 and                 can  be!
studied simultaneously.

z = 0 z = 1

Behavior near                determined by asymptotics.z = 1

Behavior near                determined by poles.z = 0

G(z) =

Z i1

�i1
M(�) z��d�



A Needed OPE Limit, 
Understood via Mellin

T
O1

T

O1

O1 O1

O1

!? [TT ]n,`

O1

T

O1

!
Pathology due to bad asymptotic behavior.!

!

Result controlled by leading Mellin pole,!
which gives the universal behavior expected!

from the bootstrap equation.



For any CFT, Conformal 
Blocks can be Summed

If Mellin Amplitude is exponentially bounded, we can 
sum or `Eikonalize’ the conformal blocks:
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[O1O2]n,`

X

`!1
⇡T +

O1

O1

O2

O2

X

n,`

[TT ]n,`
+ · · ·

AdS QFT aka 1/N Perturbation Theory is a special case.



For any CFT, Conformal 
Blocks can be Summed
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X

n,`

[TT ]n,`
+ · · ·

In the limit

ec
T
11c

T
22gT (u,v)

⌧T ⌧ �1,�2

Block `eikonalizes’.  Beyond this limit, !
more general series.



Future 
Directions  

and 
Conclusions 



Conclusions

• Long-Range AdS Locality Completely General!
• Eikonalization can be seen directly in the bootstrap!
• Relation between Eikonalization/Classical Fields 

and Short-Range locality!
• Can begin to improve large spin expansion



Future Directions: 
Physics of CFT Spectra

spin `

twist
�� `

Numerical

Lightcone OPE

Eikonal

AdS Black
Holes

Bootstrap

Need to develop and apply new techniques to 
understand the full CFT spectrum.
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What is the Bootstrap?

• Conformal Symmetry!

• Unitarity!

• Crossing Symmetry

What can we learn from the fundamental principles?

structure constants of the schematic form
X
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f
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f
34k

(. . .) =
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k

f
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f
23k

(. . .) . (3.3)

The (. . .) factors are functions of coordinates x
i

, called conformal partial waves. They are
produced by acting on the two-point function of the exchanged primary field �

k

with the
di↵erential operators C appearing in the OPE of two external primaries. Thus, they are also
fixed by conformal invariance in terms of the dimensions and spins of the involved fields.
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Figure 1: The conformal bootstrap condition = associativity of the operator algebra.

The dream of the conformal bootstrap is that the condition (3.3), when imposed on four-
point functions of su�ciently many (all?) primary fields, should allow one to determine the
CFT data and thus solve the CFT. Of course, there are presumably many di↵erent CFTs,
and so one can expect some (discrete?) set of solutions. One of the criteria which will help
us to select the solution representing the 3D Ising model is the global symmetry group,
which must be Z

2

.

Our method of dealing with the conformal bootstrap will require explicit knowledge of
the conformal partial waves. In the next section we will gather the needed results.

4 Conformal Blocks

In this paper we will be imposing the bootstrap condition only on four-point functions of
scalars. Conformal partial waves for such correlators were introduced in [7] and further
studied in [9, 10]; they were also discussed in [12]. Recently, new deep results about them
were obtained in [13–15]. Significant progress in understanding non-scalar conformal partial
waves was made recently in [43] (building on [44]), which also contains a concise introduction
to the concept. Below we’ll normalize the scalar conformal partial waves as in [15]; see
Appendix A for further details on our conventions.

Consider a correlation function of four scalar primaries �
i

of dimension �
i

, which is fixed
by conformal invariance to have the form [3]
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Consider the 4-pt 
CFT Correlators

Recall that 4-pt correlators can be written

h�(x1)�(x2)�(x3)�(x4)i =
A(u, v)

(x2
13x

2
24)

��

dual to bulk interactions will e↵ectively shut o↵ as the bulk impact parameter is taken to be
much greater than the AdS length. This can also be viewed as a strong form of the cluster
decomposition principle in the bulk. Since the early days of AdS/CFT it has been argued that
this notion of “coarse locality” [10] could be due to a decoupling of modes of very di↵erent
wavelengths, but it has been challenging to make this qualitative holographic RG intuition
precise. The bootstrap o↵ers a precise and general method for addressing coarse locality.

For the remainder of this section we will give a quick review of the CFT bootstrap. Then
in section 2 we delve into the argument, first giving an illustrative example from mean field
theory (a Gaussian CFT, with all correlators fixed by 2-pt functions, e.g. a free field theory in
AdS). We give the complete argument in sections 2.2 and 2.4, with some more specific results
and examples that follow from further assumptions in section 2.3. We provide more detail
on how two dimensional CFTs escape our conclusions in section 2.5. In section 3 we connect
our results to superhorizon locality in AdS, and we conclude with a brief discussion in section
4. In Appendix A we collect some results on relevant approximations of the conformal blocks
in four and general dimensions. In Appendix B we give a more formal and rigorous version
of the argument in section 2. In Appendix C we explain how our results generalize to terms
occurring in the OPE of distinct operators �1 and �2. In Appendix D we connect our results
with perturbative gravity computations in AdS.

Note added: after this work was completed we learned of the related work of Komargodski
and Zhiboedov [31]; they obtain very similar results using somewhat di↵erent methods.

1.1 Lightning Bootstrap Review

In CFTs, the bootstrap equation follows from the constraints of conformal invariance and
crossing symmetry applied to the operator product expansion, which says that a product of
local operators is equivalent to a sum

�(x)�(0) =
X

O
cOfO(x, @)O(0). (2)

Conformal invariance relates the OPE coe�cients of all operators in the same irreducible
conformal multiplet, and this allows one to reduce the sum above to a sum over di↵erent
irreducible multiplets, or “conformal blocks”. When this expansion is performed inside of a
four-point function, the contribution of each block is just a constant “conformal block coef-
ficient” PO / c2O for the entire multiplet times a function of the xi’s whose functional form
depends only on the spin `O and dimension �O of the lowest-weight (i.e. “primary”) operator
of the multiplet:

h�(x1)�(x2)�(x3)�(x4)i =
1

(x2
12x

2
34)
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X

O
POg⌧O,`O(u, v), (3)

where xij = xi � xj, the twist of O is ⌧O ⌘ �O � `O, and
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24x

2
13

◆
, (4)

2

where the conformal cross-ratios are

We can use elementary quantum mechanics!
to rewrite this in a different way...



Formulate  
CFT Bootstrap

Crossing symmetry gives the Bootstrap Equation:

are the conformally invariant cross-ratios. The functions g⌧O,`O(u, v) are also usually referred
to as conformal blocks or conformal partial waves [32–35], and they are crucial elementary
ingredients in the bootstrap program.

In the above, we took the OPE of �(x1)�(x2) and �(x3)�(x4) inside the four-point function,
but one can also take the OPE in the additional “channels” �(x1)�(x3) and �(x2)�(x4) or
�(x1)�(x4) and �(x2)�(x3), and the bootstrap equation is the constraint that the decomposition
in di↵erent channels matches:

1
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34)
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O
POg⌧O,`O(u, v) =

1

(x2
14x

2
23)
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X

O
POg⌧O,`O(v, u). (5)

Much of the power of this constraint follows from the fact that by unitarity, the conformal
block coe�cients PO must all be non-negative in each of these channels, because the PO can
be taken to be the squares of real OPE coe�cients.

2 The Bootstrap and Large ` Operators

Although some of the arguments below are technical, the idea behind them is very simple. By
way of analogy, consider the s-channel partial wave decomposition of a tree-level scattering
amplitude with poles in both the s and t channels. The center of mass energy is simply

p
s,

so the s-channel poles will appear explicitly in the partial wave decomposition. However,
the t-channel poles will not be manifest. They will arise from the infinite sum over angular
momenta, because the large angular momentum region encodes long-distance e↵ects. Crossing
symmetry will impose constraints between the s-wave and t-wave decompositions, relating the
large ` behavior in one channel with the pole structure of the other channel.

We will be studying an analogous phenomenon in the conformal block (sometimes called
conformal partial wave) decompositions of CFT correlation functions. The metaphor between
scattering amplitudes and CFT correlation functions is very direct when the CFT correlators
are expressed in Mellin space, but in what follows we will stick to position space. In position
space CFT correlators, the poles of the scattering amplitude are analogous to specific power-
laws in conformal cross-ratios, with the smallest power-laws corresponding to the leading poles.

2.1 An Elementary Illustration from Mean Field Theory

Let us begin by considering what naively appears to be a paradox. Consider the 4-point cor-
relation function in a CFT with only Gaussian or ‘mean field theory’ (MFT) type correlators.
These mean field theories are the dual of free field theories in AdS. We will study the 4-pt
correlator of a dimension �� scalar operator � in such a theory. By definition, in mean field
theory the 4-pt correlator is given as a sum over the 2-pt function contractions:
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The (. . .) factors are functions of coordinates x
i

, called conformal partial waves. They are
produced by acting on the two-point function of the exchanged primary field �

k

with the
di↵erential operators C appearing in the OPE of two external primaries. Thus, they are also
fixed by conformal invariance in terms of the dimensions and spins of the involved fields.
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Figure 1: The conformal bootstrap condition = associativity of the operator algebra.

The dream of the conformal bootstrap is that the condition (3.3), when imposed on four-
point functions of su�ciently many (all?) primary fields, should allow one to determine the
CFT data and thus solve the CFT. Of course, there are presumably many di↵erent CFTs,
and so one can expect some (discrete?) set of solutions. One of the criteria which will help
us to select the solution representing the 3D Ising model is the global symmetry group,
which must be Z

2

.

Our method of dealing with the conformal bootstrap will require explicit knowledge of
the conformal partial waves. In the next section we will gather the needed results.

4 Conformal Blocks

In this paper we will be imposing the bootstrap condition only on four-point functions of
scalars. Conformal partial waves for such correlators were introduced in [7] and further
studied in [9, 10]; they were also discussed in [12]. Recently, new deep results about them
were obtained in [13–15]. Significant progress in understanding non-scalar conformal partial
waves was made recently in [43] (building on [44]), which also contains a concise introduction
to the concept. Below we’ll normalize the scalar conformal partial waves as in [15]; see
Appendix A for further details on our conventions.

Consider a correlation function of four scalar primaries �
i

of dimension �
i

, which is fixed
by conformal invariance to have the form [3]
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PO = f2 > 0

Unitarity:



What’s so great about 
Mellin Amplitudes?

• Mellin Space is `Momentum Space for CFTs’ !

• Use complex analysis to study CFTs.       
Mellin Amplitudes always meromorphic!

• Mellin Amplitude Factorizes on CFT States!

• Algebraic Feynman Rules for AdS/CFT!

• In Flat Space Limit of AdS/CFT:              
Mellin Amplitude becomes S-Matrix,         CFT 
Bootstrap gives Optical Theorem, 
meromorphy becomes analyticity


