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Systems with a large number of degrees of freedom 
often display surprising emergent phenomena

criticality, dual descriptions, confinement, superconductivity, ...

General strategy: develop theories of matter by 
looking for universal dynamics at long distance

➡ Most developed: relativistic QFT. 
E.g. phases of gauge theories in 3+1 dimensions include 
free phases, CFTs, Higgs, confinement

Well understood in certain `toy’ models, such as 
perturbative theories, large N, SUSY

... still far from “realistic” gauge theories (QCD)



QFT at finite density arises as low energy limit of various 
condensed matter and high energy systems. 
However, much less developed than relativistic case!

Understanding finite density QFT is urgently needed, given 
spectacular discoveries in strongly correlated electronic systems

 

 

 

 

 

 

 

 
 

 

Figure 1. Phase diagram of cuprate superconductors.  

Schematic phase diagram of cuprate superconductors as a function of hole 

concentration (doping) p. The Mott insulator at p = 0 shows antiferromagnetic 

(AF) order below TN, which vanishes rapidly with doping. At high doping, the 

metallic state shows all the signs of a conventional Fermi liquid. At the critical 

doping pc, two events happen simultaneously: superconductivity appears (below 

a critical temperature Tc) and the resistivity deviates from its Fermi-liquid 

behaviour, acquiring a linear temperature dependence. The simultaneous onset of 

Tc and linear resistivity is the starting point for our exploration of cuprates. The 

evolution from metal to insulator is interrupted by the onset of the “pseudogap 

phase” which sets in below a crossover temperature T*, which goes to zero at a 

quantum critical point (QCP) located at p* in the absence of superconductivity 

(removed for example by application of a large magnetic field). The existence, 

nature and location of such a QCP are a major focus of this review. In the 

presence of superconductivity, the QCP may move to lower doping, down to pS, 

as a result of a competition between the pseudogap and superconducting phases 

[59, 95].   
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Can we understand universal properties of 
these systems using low energy QFT?

➡ Our strategy: develop finite density QFT in 
perturbative regime (then try to extend to strong coupling)

Objective: determine low energy dynamics in regime where 
corrections to quasiparticle picture are present

GF (p) =
Z�1(p)

i! � Zv(p)"k

quasiparticle
residue

velocity
renormalization

• NFL effects on superconductivity (SC)?
• quantum critical points (QCP)
• transition between SC and QCP?



A. Basics of finite density QFT

Electrons in a metal with strong Coulomb interactions are 
mapped to EFT of weakly coupled quasiparticles:
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Fermi surface 
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  Excitations and pairing mechanisms

�nk =  †(k) (k) density fluctuations (shape of FS)

Cooper operator, U(1) phase fluctuation

Lint = V (k � k0) (k) (�k) †(k0) †(�k0)

Pairing by (classically) marginal 4-F interaction:
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Stronger pairing in high Tc materials

e.g. emergent scalarV (q) =
1

q20 + ~q 2

  The model

Fermi surface coupled to massless scalar in d = 3� ✏
SU(N) global symmetry 
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Will combine
perturbative expansion

large N

Also, QCD at finite density



+ + ... D(q) =
1

q20 + q2 +M2
D |q0/q|

z = 3

+ + ...

Quantum effects
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O(1/N) g2⇤ = 12⇡2✏Fixed point

independent of momentum!

dynamical exponent
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B. RG for the pairing interaction
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•  Approx. valid to all loops at large N and small g

• Planar diagrams subleading due to kinematics
of Fermi surface
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Non-Fermi liquid effects give a 3-term structure

�� = g2 + 2��+
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a) BCS case: no massless scalar �� =
1
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For attractive interaction, � ! �1 µinst ⇠ e�2⇡2N/�0 ⇤at

b) “Color superconductivity”: �� = g2 +
1
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�2 Son

Shankar
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BCS instability, superconductivity

Parametrically enhanced instability µinst ⇠ e�
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c) Non-Fermi liquid: �� = g2 + 2��+
1
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Compare scales:
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C. Quantum criticality

IR and UV fixed pts �± = �2⇡2N�
⇣
1±

p
1� �c/�

⌘

Focus on the stable IR critical point

• NFL effects on fermions

• Superconducting instability is absent; 4-F pairing irrelevant

Z(p0) = Zv(p0)
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0

• Approach to the fixed point: perturb � ! �+ ��
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c anomalous dim. of 4-Fermi operator
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Phase transition

As � ! �crit the critical point disappears

➡ IR and UV fixed points merge and annihilate

➡ from �0
⇤ = 2

q
�2 � �2

crit

it takes longer to approach the fixed point

➡ 4-Fermi operator becomes exactly marginal

Just below transition, the theory develops an instability at
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Infinite order (continuous) phase transition between QC and SC!



D. Superconductivity and NFL

Develop a framework for including NFL effects in 
the formation of the superconducting gap

(i) Integrate out massless scalar exactly

=+ V (p, p0) = ��+ g2D(p� p0)
p

�p �p0

p0

(ii) Hubbard-Stratonovich on 4-F int. to introduce the SC gap

V    † † = �V �1�†�+�†  +� † †



(iii) Integrate out fermions. Effective action for gap
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Z

p,p0
V �1

(p, p0)�†
(p)�(p0)�

Z

p
log

⇥
(Z(p)p0)

2
+ "(p)2 +�(p)2

⇤

classical piece.
Nonlocal mass (positive)

fermion determinant.
Favors instability

(iv) Extremize the effective action

�(p) =
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q
V (p, q)

�(q)
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Classical approximation valid at large N: agrees with Schwinger-Dyson

=
neglects vertex corrections.

OK at large N



g
gcrit

no anomalous dim

with anomalous dim

SC QC

The integral Schwinger-Dyson-Eliashberg eq. can be solved
numerically. 

Evolution of the physical gap:

�(p = 0)

[Son]

Result agrees qualitatively with RG approach.

Can also transform it (approx.) into a differential equation.



D. Conclusions

• Continue classification of phases of finite density QFT

• Extend results to strong coupling

• Apply to other model theories

NFL effects (anomalous dim, velocity renorm) can produce 
strong changes in the IR dynamics, even at weak coupling

✓ New fixed point for the 4-Fermi Cooper interaction

✓ Superconductivity with large NFL corrections

✓ Continuous phase transition connecting QCP and SC

Future directions

• Implications for QCD at finite density


