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Outline 

1. Introduction - Effective Conformal Dominance and 
and the conformal basis on the light-cone (LC).

2. Use this basis to solve 2D QCD: Fundamental 
Fermions coupled to a gauge field at strong 
coupling.

3. Progress in formulating the LC conformal basis in 
3D and results for a free massive scalar theory.

4. Some comments on non-Lagrangian theories.

5. Conclusions.



In a theory with a mass gap, what is the relation between:

To a CFT add a relevant operator 
which results in a mass gap in IR. 
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AdS/CFT:  Light bound-states are mostly created by 
lowest “conformal harmonics.”

This motivates a question

Within a particular sector:

h⌦|O�(0)| lighti ⌘ f(�) (Canonical Size)

What is the behavior 

f(�) =? as � ! 1 ?



Naively from holography: f(�) ⇠ 1

�2

(since AdS masses are related to scaling dim in QFT)

Indeed - true for the free 3D massive scalar.

True for 2D QCD

“Effective Conformal Dominance”
Decoupling of high-dimension ops:

A conjecture: f(�) ⇠ e�c�

in an interesting class of systems!

w/ Fitzpatrick, Kaplan
& Randall



A QM analogy: Take a spherically symmetric potential 
an break spherical symmetry 
with a low spherical harmonic

Ex:  turn on E-field in the z-direction: 
�V = ✏ cos(✓)

h`| GSi ⇠ ✏`
Final GS-state has small overlap 

with high harmonics:

A low-harmonic mixes low-harmonics 
only with other low-harmonics: h`+ 1|�V |`i ⇡ ✏/2

A relevant operator is always 
a low “conformal-harmonic”. CLL0H ⌧ 1

OPE convergence:

Back to conformal symm:

Light states dominated 
by low conf harmonics!



Basic idea:  Since higher conformal harmonics
decouple rapidly from low-mass states,

we can try to use them as a basis to solve the theory:
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Building the basis:

h⌦|Oi| lightiVacuum after 
conformal breaking

But the basis is more naturally built on the 
conformal preserving vacuum.

Our approach: Use light-cone quantization
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Light-cone: |⌦i = |0iCFT

P+ = P+,CFT + P+,Rel�Op [P+,Rel�Op, P�] = 0w/

(NEC)Now, P�|0iCFT = 0 but P� > 0 for other | i

h |P+,Rel�Op|0iCFT = 0

Basis in d-dim (E-states of Conf.-Casimir and momentum):
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Evidence for effective conformal dominance
from 2D QCD at Finite-N.

Why this model?

1.  An interesting assymp. free theory w/ strong-coupling in the 
IR and a set of bound-states.

2.  Gluons have no d.o.f.  : in Light-cone gauge one can easily
integrate them out.
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[g] ⇠ (Mass)

3.  Interesting:  Relativistic bound-states which do not contain a 
definite number of particles (much like real QCD).

4.  Has been solved at large-N by ’t Hooft. 
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A conformal basis for the H-space

Quasi-primary ops of the free fermion theory:
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The amplitude                      is a polynomial in the f(p1, p2, ..., pk) pi

The K-killing eqn determines this amplitude to be 
related to Jacobi polynomials.

(which form a basis on the simplex spanned by    )pi

For example, for 2-fermions: 
Pk(2x� 1), x =

p1

P

Eff. Conf. Dom. Light-states are made
from low-degree polys 



Goal - Diagonalize: M2
ij = hOi|2P+P�|Oji

O(1) ⇠  † ,

O(2) ⇠ (@ †) �  †@ ,

O(3) ⇠ ( † )2,

O(4) ⇠ (@ †)  † �  †(@ ) † +  † (@ †) �  †  †(@ ).

Basis:
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Multi-particle states for 2D QCD at finite-N

Has a massless particle many multi-part states:

B1 + n1B0, B2 + n2B0, B3 + n3B0, · · ·
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Few comments:

1.  Using a conformal basis offers a way to non-
perturbatively define the 2D gauge theory.

2.  It is a discretization which naturally uses CFT 
discreteness without the need to introduce 

additional “external” deformations of the theory
(like on the lattice).  

3.  It is effective for the low-energy spectrum, 
             (Light 2D QCD states understood analytically)

4.  How to estimate rapidity of convergence?



Free 3D scalar
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For the 2-particle state, the density is 

⇢(µ2) ⇠ 1
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So what is the size of the discretization error? 

⇤IR ⇠ 1

�2

Parametrically:



Extending the construction to 
non-Lagrangian theories

Problem - on the LC there are constraints 
that need to be implemented.

@�� =
m

2
 Ex - massive fermion in 2d:

How to incorporate constraints when there’s no EOM?

Use OPE of the relevant operator with other ops.
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Ex - massive fermion: �OR ⇠ m(� )

Implementing the constraint OPE gives:

�(0, x2) =
m

4

Z
dx1 sgn(x2 � x1) (0, x1)

(consistent with the EOM)

OPE of relevant op with itself determines hamiltonian.

In practice, for non-integer dimensions, the procedure 
requires a regulator. 

2D QCD examples can formulated this way.

Interesting open problem!



Conclusions/Confusions 
1. There’s new approach to solving/quantizing a QFT using a conformal 

basis on the LC. 

2. It is based on the decoupling of high scaling dimension ops from 
low-E spectrum:  “Effective Conformal Dominance”.

3. Evidence for exponential decoupling in gapped strongly coupled 2D 
systems at small N and with a discrete spectrum of bound-states.  

4. Can be formulated in 3D.  For a free scalar, when spectrum was 
continuous, we saw power-law decoupling.                              
(Currently working on extension to                           )

5. Many open questions: 

How can we estimate the rate of decoupling? Is it related to

the behavior of the density of states near the gap?

How to deal with Non-Lagrangian theories?

V = m2�2 + ��4


