Interacting topological insulators in 3D Anomalies in (2+1)D interacting field theories

Chong Wang

Massachussets Institute of Technology

Aspen Center for Physics Feb 21, 2015

Based on works with Andrew C. Potter, Adam Nahum and T. Senthil

Topological insulator 101

- Zero-temperature phases with some global symmetry G
- ullet Bulk: gapped, excitation spectrum \sim trivial insulator
- Boundary theory **anomalous**: cannot exists on its own, must live on the boundary
- Free fermion limit: gapless boundaries
 - massless Dirac/Weyl/Majorana fermions
 - fully classified (Ryu, Schnyder, Furusaki, Ludwig; Kitaev)

Topological insulator 101

Classic example: 3D TI with time-reversal symmetry \mathcal{T} and charge conservation U(1) (Fu, Kane, Mele)

• Surface: single (2-component) Dirac fermion

$$H_{eff} = \psi^{\dagger} \vec{p} \cdot \vec{\sigma} \psi$$

- Mass terms not allowed:
 - $m \bar{\psi} \psi$ breaks ${\cal T}$
 - $\Delta\psi\sigma^{y}\psi$ breaks U(1)
- "Parity anomaly" in field theory (Redlich, 1984; Mulligan, Burnell, 2013)

- **(())) (())) ())**

Qualitatively new features in interacting systems:

Gapless boundary \rightarrow

- Boundaries could be gapped without symmetry breaking (fermion bilinear mass), with intrinsic topological order (Vishwanath, Senthil; CW, Senthil; Burnell, Chen, Fidkowski, Vishwanath)
- even including the famous free fermion TI parity anomaly reproduced by a gapped topological order!
 (CW, Potter, Senthil; Metlitski, Kane, Fisher; Chen, Fidkowski, Vishwanath; Bonderson, Nayak, Qi, arXiv:1306.32**)

Qualitatively new features in interacting systems:

Fully classified \rightarrow

• Reduction: some nontrivial free fermion phases become trivial Fidkowski, Kitaev; Tang, Wen (1D) Qi; Ryu, Zhang; Levin, Gu (2D) Kitaev; Fidkowski, Chen, Vishwanath; CW, Senthil; Metlitski, Chen, Fidkowski, Vishwanath (3D)

You, BenTov, Xu; You, Xu (4D)

 Enrichment (this talk): new bulk states emerge, with no non-interacting counterparts ~ new kinds of anomalies on surfaces

3D Interacting fermions with charge conservation U(1) and time-reversal T, microscopic fermions carry charge-1 and $T^2 = -1$

Physically motivated:

- Materials with strong spin-orbit and *e-e* interaction: Pyrochlore iridates, Kondo insulators, etc.
- Time-reversal & charge-conservation are realistic and robust

Main result: $\mathbb{Z}_2(\text{free}) \rightarrow \mathbb{Z}_2^3(\text{interacting})$ (CW, Potter, Senthil 2014)

イロト 不得下 イヨト イヨト 二日

1 A simple example beyond free fermions

- 2 Classification: from \mathbb{Z}_2 to \mathbb{Z}_2^3
- 3 Characterization: surface magnets and superconductors
- 4 Topological paramagnet in frustrated spin-1 systems

イロト イポト イヨト イヨト

Outline

1 A simple example beyond free fermions

3 Characterization: surface magnets and superconductors

4 Topological paramagnet in frustrated spin-1 systems

< ロ > < 同 > < 三 > < 三

A simple example beyond free fermions

Cluster TI

- Take three-body bound states: charge-3 fermions *F* ~ *fff*
- Put F into a topological (Fu-Kane-Mele) band
- Surface: one flavor of charge-3 massless Dirac fermion

• Break
$$\mathcal{T}$$
 on surface:
 $\sigma_{xy} = \frac{1}{2}(e^*)^2 = \frac{9}{2}, \ \kappa_{xy} = \frac{1}{2}, \ \sigma_{xy} - \kappa_{xy} = 4$

• In strict 2D electron systems without topological order, $\sigma_{xy} - \kappa_{xy} = 8n$ (e.g. E_8 state with no hall conductance) \rightarrow Cluster TI is different from free fermion TI! (CW, 2014)

What is it?

Claim:

 $\label{eq:Charge-3} \begin{array}{l} {\sf Dirac} \cong {\sf Charge-1} \ {\sf Dirac} \otimes {\sf Charge-neutral} \ {\mathbb Z}_2 \ {\sf gauge \ theory} \\ {\sf Check: \ consider \ Cluster \ TI} \otimes {\sf Free \ TI, \ surface \ state:} \end{array}$

$$\mathcal{L} = ar{\psi}\sigma^{\mu}(-i\partial_{\mu} + A_{\mu})\psi + ar{\Psi}\sigma^{\mu}(-i\partial_{\mu} + 3A_{\mu})\Psi$$

• Pairing gap (breaks U(1)):

$$\Delta \mathcal{L} = i \Delta \psi \sigma_y \psi + i \xi (\Delta)^3 \Psi \sigma_y \Psi + h.c.$$

• To restore U(1), need to condense vortices

(日) (周) (三) (三)

What is it? (cont.)

Vortex statistics can be calculated

(Methods developed in CW, Potter, Senthil; Metlitski, Kane, Fisher, 2013) \rightarrow strength-1 vortex (π -vortex) is a fermion

Condensing strength-2 vortex (2π-vortex)
 → Z₂ gauge theory (topological order)

・ロト ・ 同ト ・ ヨト ・ ヨ

Condensing higher vortices

- "Vortex" of the $n\pi$ -vortex condensate is a boson but carries charge 2/n
- Excitations in final state: uncondensed π vortex + charge-(2/n) boson b

Anomalous topological order

- Excitations: Bogoliubov particle e (fermion, $T^2 = -1$), un-condensed vortex ϵ (fermion), bound state $m \sim e\epsilon$ (fermion, $T^2 = -1$)
- Charge-neutral Z₂ topological order dubbed e_f Tm_f T −cannot be realized in strict 2D: anomalous Z₂ gauge theory

Chiral if realized in strict 2D: edge chiral central charge c = 4(mod8) → must break T

・ロト ・ 同ト ・ ヨト ・ ヨ

Outline

A simple example beyond free fermions

3 Characterization: surface magnets and superconductors

4 Topological paramagnet in frustrated spin-1 systems

< ロ > < 同 > < 三 > < 三

General TI surface

Claim: an anomalous surface is either

- ${\small \textcircled{0}} \ \cong {\small \mathsf{Charge-1}} \ {\small \mathsf{Dirac}} \ \otimes \ {\small \mathsf{Charge-neutral}} \ {\small \mathsf{topological}} \ {\small \mathsf{order}}$
- 2 \cong Charge-neutral topological order

Key step of the argument:

condensing 2π -vortices \rightarrow charge quantized in integer units, and could be neutralized by binding electrons

But why can we always condense 2π -vortices?

2π -vortex from monopole tunneling

• Surface 2π -vortex can be created through monopole tunneling (see also Metlitski, Kane, Fisher, PRB 2013) • First assume monopole carries no charge ($\theta = 0$) SPT Vacuum • Time-reversal trivial (up to a gauge transform): $\mathcal{T}: m \leftrightarrow m^{\dagger}$

Monopole must be bosonic

(nontrivial, for proof, see CW, Potter, Senthil, 2014, Kravec, McGreevy, Swingle, 2014)

• Monopole trivial $\rightarrow 2\pi$ -vortex trivial and could be condensed \rightarrow surface \cong Charge-neutral topological order Charged monopole: θ -term

Magneto-electric response (θ -term):

$$\mathcal{L}_{ heta} = rac{ heta}{4\pi^2}ec{E}\cdotec{B}$$

- Witten effect: monopole charge $= \theta/2\pi$
- Time-reversal invariance $\rightarrow \theta = 0$ or $\pi \pmod{2\pi}$
- $\theta = \pi$ for free fermion TI (Qi, Hughes, Zhang, 2008)
- If: θ = π for some bulk state combine with free fermion TI → θ = 0, monopole carries no charge → surface ≅ Charge-neutral topological order

So for $\theta = \pi$, surface

 \cong Charge-1 Dirac \otimes Charge-neutral topological order

イロト 不得下 イヨト イヨト 二日

Anomalous charge-neutral topological orders

 $b\equiv S^{-}=f_{\downarrow}^{\dagger}f_{\uparrow}$ $n_b\equiv S^z=rac{1}{2}(f_{\uparrow}^{\dagger}f_{\uparrow}-f_{\downarrow}^{\dagger}f_{\downarrow})$

- Anomalous charge-neutral topological orders classified by Z²₂ (Chen, et al, 2011; Vishwanath, Senthil, 2012; Kapustin, 2014; Freed, 2014)
- Could also appear on the surface of spin (boson) systems: topological paramagnets (local objects charge neutral → must be bosonic)
- Topological paramagnets in electron systems: Mott insulators → spin (boson) systems
- Total classification = \mathbb{Z}_2 (Free) × \mathbb{Z}_2^2 (Topological paramagnets) = \mathbb{Z}_2^3 (CW, Potter, Senthil, 2014)

Another topological paramagnet

The remaining \mathbb{Z}_2 : another topological paramagenet

- Representative surface state: \mathbb{Z}_2 topological order, e and m are bosons but $\mathcal{T}^2 = -1$ (eTmT)
- Described within group-cohomology (Chen, Gu, Liu, Wen)
- Cannot be realized in strict 2D "non-edgable"

・ロン ・四 ・ ・ ヨン ・ ヨン

Outline

A simple example beyond free fermions

3 Characterization: surface magnets and superconductors

4 Topological paramagnet in frustrated spin-1 systems

< □ > < 同 > < 回 > < Ξ > < Ξ

Surface magnets: hall transport

Breaking ${\mathcal T}$ (depositing a magnet): gapped without topological order

(Vishwanath, Senthil, 2012)

.

Surface superconductors: Majorana cones

Breaking U(1) (depositing a superconductor): topological orders confined

- TBI: surface superconductors gapped
- $e_f Tm_f T \cong TBI \oplus Cluston TI$: also gapped
- eTmT: surface superconductor gapless! Eight Majorana cones protected by T (~ 8 copies of He-3B, but bulk can be insulating only in interacting system)

can be seen through ARPES!

イロト イポト イヨト イヨト 二日

Understanding the cones

Argue in reverse: start from eight Majorana cones (four Dirac)

$$H = \sum_{i=1}^{4} \psi_i^{\dagger} (p_x \sigma^x + p_y \sigma^z) \psi_i$$

with $\mathcal{T}: \psi_i \to i\sigma_y \psi_i^{\dagger}$

- Quadratic gaps forbidden by \mathcal{T} non-perturbative gap?
- Introduce auxiliary U(1): $\psi_i \rightarrow e^{i\theta}\psi_i$
- $H_{\Delta} = i\Delta(\vec{x})\psi_i\sigma_y\psi_i + h.c.$ \rightarrow breaks \mathcal{T} and U(1), but preserves $\tilde{\mathcal{T}} = \mathcal{T}U_{\pi/2}$

イロト 不得下 イヨト イヨト 二日

Understanding the cones (cont.)

- Disorder $\Delta(ec{x})~(\langle\Delta(ec{x})
 angle=0)$ to recover symmetries
- Need to proliferate vortices, but fundamental vortex nontrivial: $\tilde{\mathcal{T}}^2 = -1$
- Condense strength-2 vortex $\rightarrow \mathbb{Z}_2$ -ordered eTmT state! (related results: Fidkowski, Chen, Vishwanath, 2013; Metlitski, Fidkowski, Chen, Vishwanath, 2014)

イロト イポト イヨト イヨト

Outline

- A simple example beyond free fermions
- 2 Classification: from \mathbb{Z}_2 to \mathbb{Z}_2^3
- 3 Characterization: surface magnets and superconductors
- Topological paramagnet in frustrated spin-1 systems

< □ > < 同 > < 回 > < Ξ > < Ξ

A useful equivalence

Four Dirac cones $(\mathcal{T}: \psi_i \to i\sigma_y \psi_i^{\dagger}) \cong eTmT$ topological order

- Also true with SU(2) invariance: ψ_{α,a} → U_{αβ}ψ_{β,a} (a = 1, 2) in particular, e and m are SU(2)-singlets
- This is the surface of a singlet topological superconductor at $\nu=2$ (Ryu, Schnyder, Ludwig)

Useful for constructing trial wavefunctions for topological paramagnet in spin models (CW, Nahum, Senthil, 2015)

イロト イポト イヨト イヨト

Construction: field theory

- Start from singlet topological superconductor at $\nu = 2$
- Couple the fermions (bulk and boundary) to an SU(2) gauge field
- Bulk: SU(2) gauge field has a θ-term with θ = νπ = 2π → confines without breaking T → a symmetric bulk with only bosonic d.o.f.
- Surface: e and m are SU(2)-singlets and decouple with the gauge field → eTmT topological order survives confinement

 \rightarrow a topological paramagnet in bosonic (spin) systems

イロト 不得下 イヨト イヨト 二日

Construction: slave particles

• Write spin operators (spin-1) as

$$\vec{S} = rac{1}{2} \sum_{\mathbf{a}=1,2} f^{\dagger}_{\mathbf{a} \alpha} \vec{\sigma}_{\alpha \beta} f_{\mathbf{a} \beta}$$

- Sp(4) gauge redundancy (Xu et. al, 2011)
- Consider mean field state such that
 - **(**) Gauge group broken down to SU(2)
 - 2 $f_{a\alpha}$ form SU(2)-singlet superconductors at $\nu = 2$
- Projecting into physical Hilbert space \rightarrow introducing gauge fluctuation \rightarrow bulk confined
- \rightarrow a trial projective wavefunction of topological paramagnet in frustrated spin-1 systems

< ロト < 同ト < ヨト < ヨト

Summary

- \mathbb{Z}_2 (Free) $\times \mathbb{Z}_2^2$ (Topological paramagnets) = \mathbb{Z}_2^3 (Interacting)
- Topological paramagnet (possibly) in frustrated spin-1 systems

Thank you!

イロト イポト イヨト イヨト