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Topological insulator 101

Zero-temperature phases with some global symmetry G

Bulk: gapped, excitation spectrum ∼ trivial insulator

Boundary theory anomalous:
cannot exists on its own, must live on the boundary

Free fermion limit: gapless boundaries
– massless Dirac/Weyl/Majorana fermions
– fully classified (Ryu, Schnyder, Furusaki, Ludwig; Kitaev)
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Topological insulator 101

Classic example: 3D TI with time-reversal symmetry
T and charge conservation U(1) (Fu, Kane, Mele)

Surface: single (2-component) Dirac fermion

Heff = ψ†~p · ~σψ

Mass terms not allowed:

mψ̄ψ breaks T
∆ψσyψ breaks U(1)

“Parity anomaly” in field theory
(Redlich, 1984; Mulligan, Burnell, 2013)
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Beyond free fermions?

Qualitatively new features in interacting systems:

Gapless boundary →

Boundaries could be gapped without symmetry breaking (fermion
bilinear mass), with intrinsic topological order
(Vishwanath, Senthil; CW, Senthil; Burnell, Chen, Fidkowski, Vishwanath)

even including the famous free fermion TI – parity anomaly
reproduced by a gapped topological order!
(CW, Potter, Senthil; Metlitski, Kane, Fisher; Chen, Fidkowski, Vishwanath; Bonderson,

Nayak, Qi, arXiv:1306.32**)
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Beyond free fermions? (cont’)

Qualitatively new features in interacting systems:

Fully classified →

Reduction: some nontrivial free fermion phases become trivial
Fidkowski, Kitaev; Tang, Wen (1D)
Qi; Ryu, Zhang; Levin, Gu (2D)
Kitaev; Fidkowski, Chen, Vishwanath; CW, Senthil; Metlitski, Chen, Fidkowski,
Vishwanath (3D)

You, BenTov, Xu; You, Xu (4D)

Enrichment (this talk): new bulk states emerge, with no
non-interacting counterparts ∼ new kinds of anomalies on surfaces
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Focus of this talk

3D Interacting fermions with charge conservation U(1) and time-reversal
T , microscopic fermions carry charge-1 and T 2 = −1

Physically motivated:

Materials with strong spin-orbit and e-e interaction: Pyrochlore
iridates, Kondo insulators, etc.

Time-reversal & charge-conservation are realistic and robust

Main result: Z2(free)→ Z3
2(interacting)

(CW, Potter, Senthil 2014)
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Outline

1 A simple example beyond free fermions

2 Classification: from Z2 to Z3
2

3 Characterization: surface magnets and superconductors

4 Topological paramagnet in frustrated spin-1 systems
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A simple example beyond free fermions

Cluster TI

Take three-body bound states: charge-3
fermions F ∼ fff

Put F into a topological (Fu-Kane-Mele) band

Surface: one flavor of charge-3 massless Dirac
fermion

Break T on surface:
σxy = 1

2 (e∗)2 = 9
2 , κxy = 1

2 , σxy − κxy = 4

In strict 2D electron systems without topological order,
σxy − κxy = 8n (e.g. E8 state with no hall conductance)
→ Cluster TI is different from free fermion TI!
(CW, 2014)
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A simple example beyond free fermions

What is it?

Claim:
Charge-3 Dirac ∼= Charge-1 Dirac ⊗ Charge-neutral Z2 gauge theory

Check: consider Cluster TI ⊗ Free TI, surface state:

L = ψ̄σµ(−i∂µ + Aµ)ψ + Ψ̄σµ(−i∂µ + 3Aµ)Ψ

Pairing gap (breaks U(1)):

∆L = i∆ψσyψ + iξ(∆)3Ψσy Ψ + h.c .

To restore U(1), need to condense vortices
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A simple example beyond free fermions

What is it? (cont.)

Vortex statistics can be calculated
(Methods developed in CW, Potter, Senthil; Metlitski, Kane, Fisher, 2013)

→ strength-1 vortex (π-vortex) is a fermion

Condensing strength-2 vortex (2π-vortex)
→ Z2 gauge theory (topological order)
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A simple example beyond free fermions

Condensing higher vortices

”Vortex” of the nπ-vortex condensate is a boson but
carries charge 2/n

Excitations in final state:
uncondensed π vortex + charge-(2/n) boson b

Only for n = 2: Bogoliubov fermion eα = b†cα and π
vortex ε are both charge-neutral
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A simple example beyond free fermions

Anomalous topological order

Excitations: Bogoliubov particle e (fermion,
T 2 = −1), un-condensed vortex ε (fermion), bound
state m ∼ eε (fermion, T 2 = −1)

Charge-neutral Z2 topological order dubbed ef Tmf T
–cannot be realized in strict 2D: anomalous Z2 gauge
theory

Chiral if realized in strict 2D: edge chiral central
charge c = 4(mod8) → must break T
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Classification: from Z2 to Z3
2

General TI surface

Claim: an anomalous surface is either

1 ∼= Charge-1 Dirac ⊗ Charge-neutral topological order

2 ∼= Charge-neutral topological order

Key step of the argument:
condensing 2π-vortices → charge quantized in integer units, and could be
neutralized by binding electrons

But why can we always condense 2π-vortices?
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Classification: from Z2 to Z3
2

2π-vortex from monopole tunneling

Surface 2π-vortex can be created through monopole
tunneling
(see also Metlitski, Kane, Fisher, PRB 2013)

First assume monopole carries no charge (θ = 0)

Time-reversal trivial (up to a gauge transform):

T : m↔ m†

Monopole must be bosonic
(nontrivial, for proof, see CW, Potter, Senthil, 2014, Kravec, McGreevy, Swingle, 2014)

Monopole trivial → 2π-vortex trivial and could be condensed
→ surface ∼= Charge-neutral topological order
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Classification: from Z2 to Z3
2

Charged monopole: θ-term

Magneto-electric response (θ-term):

Lθ =
θ

4π2
~E · ~B

Witten effect: monopole charge = θ/2π

Time-reversal invariance → θ = 0 or π (mod 2π)

θ = π for free fermion TI (Qi, Hughes, Zhang, 2008)

If: θ = π for some bulk state
combine with free fermion TI → θ = 0, monopole carries no charge
→ surface ∼= Charge-neutral topological order

So for θ = π, surface
∼= Charge-1 Dirac ⊗ Charge-neutral topological order
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Classification: from Z2 to Z3
2

Anomalous charge-neutral topological orders

b ≡ S− = f †↓ f↑

nb ≡ Sz = 1
2

(f †↑ f↑ − f †↓ f↓)

Anomalous charge-neutral topological orders
classified by Z2

2
(Chen, et al, 2011; Vishwanath, Senthil, 2012;

Kapustin, 2014; Freed, 2014)

Could also appear on the surface of spin
(boson) systems: topological paramagnets

(local objects charge neutral → must be
bosonic)

Topological paramagnets in electron systems:
Mott insulators → spin (boson) systems

Total classification = Z2 (Free) × Z2
2

(Topological paramagnets) = Z3
2

(CW, Potter, Senthil, 2014)
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Classification: from Z2 to Z3
2

Another topological paramagnet

The remaining Z2: another topological paramagenet

Representative surface state: Z2 topological order, e and m are
bosons but T 2 = −1 (eTmT )

Described within group-cohomology (Chen, Gu, Liu, Wen)

Cannot be realized in strict 2D – “non-edgable”
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Characterization: surface magnets and superconductors

Surface magnets: hall transport

Breaking T (depositing a magnet): gapped without topological order

(Vishwanath, Senthil, 2012)
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Characterization: surface magnets and superconductors

Surface superconductors: Majorana cones

Breaking U(1) (depositing a superconductor): topological orders confined

TBI: surface superconductors gapped

ef Tmf T ∼=TBI⊕Cluston TI: also gapped

eTmT : surface superconductor gapless! Eight Majorana cones
protected by T
(∼ 8 copies of He-3B, but bulk can be insulating only in interacting
system)

can be seen through ARPES!
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Characterization: surface magnets and superconductors

Understanding the cones

Argue in reverse: start from eight Majorana cones (four Dirac)

H =
4∑

i=1

ψ†i (pxσ
x + pyσ

z )ψi

with T : ψi → iσyψ
†
i

Quadratic gaps forbidden by T – non-perturbative gap?

Introduce auxiliary U(1): ψi → e iθψi

H∆ = i∆(~x)ψiσyψi + h.c .
→ breaks T and U(1), but preserves T̃ = T Uπ/2
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Characterization: surface magnets and superconductors

Understanding the cones (cont.)

Disorder ∆(~x) (〈∆(~x)〉 = 0) to recover symmetries

Need to proliferate vortices, but fundamental vortex nontrivial:
T̃ 2 = −1

Condense strength-2 vortex → Z2-ordered eTmT state!
(related results: Fidkowski, Chen, Vishwanath, 2013; Metlitski, Fidkowski, Chen,

Vishwanath, 2014)
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Topological paramagnet in frustrated spin-1 systems

A useful equivalence

Four Dirac cones (T : ψi → iσyψ
†
i ) ∼= eTmT topological order

Also true with SU(2) invariance: ψα,a → Uαβψβ,a (a = 1, 2)
in particular, e and m are SU(2)-singlets

This is the surface of a singlet topological superconductor at ν = 2
(Ryu, Schnyder, Ludwig)

Useful for constructing trial wavefunctions for
topological paramagnet in spin models

(CW, Nahum, Senthil, 2015)
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Topological paramagnet in frustrated spin-1 systems

Construction: field theory

Start from singlet topological superconductor at ν = 2

Couple the fermions (bulk and boundary) to an SU(2) gauge field

Bulk: SU(2) gauge field has a θ-term with θ = νπ = 2π → confines
without breaking T → a symmetric bulk with only bosonic d.o.f.

Surface: e and m are SU(2)-singlets and decouple with the gauge
field → eTmT topological order survives confinement

→ a topological paramagnet in bosonic (spin) systems
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Topological paramagnet in frustrated spin-1 systems

Construction: slave particles

Write spin operators (spin-1) as

~S =
1

2

∑
a=1,2

f †aα~σαβfaβ

Sp(4) gauge redundancy (Xu et. al, 2011)

Consider mean field state such that
1 Gauge group broken down to SU(2)
2 faα form SU(2)-singlet superconductors at ν = 2

Projecting into physical Hilbert space → introducing gauge
fluctuation → bulk confined

→ a trial projective wavefunction of topological paramagnet in frustrated
spin-1 systems
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Topological paramagnet in frustrated spin-1 systems

Summary

Z2 (Free) × Z2
2 (Topological paramagnets) = Z3

2 (Interacting)

Topological paramagnet (possibly) in frustrated spin-1 systems

Thank you!
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