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Topological Insulator 101:

d-dimensional bulk: massive Dirac/Majorana fermion; 
(d-1)-dimensional boundary: gapless Dirac/Weyl/Majorana fermions, 
gapless spectrum protected by symmetry, i.e. Symmetry forbids 
fermion mass term.
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d-dimensional

(d-1)-dimensional

Mirror sector

(d-1)-dimensional boundary cannot exist as a (d-1)-dimensional 
system without the bulk. i.e. Once symmetries are gauged, will have 
gauge anomaly. Full classification of noninteracting topological 
insulator: (Ryu, et.al., Kitaev, 2009)



The boundary of TI without any symmetry must have gravitational 
anomaly.

Example: topological superconductor with no symmetry at all

Classification (Ryu, et.al., Kitaev, 2009)

Gravitational Anomaly of single Majorana fermion (Alvarez-
Gaume, Witten, 1983)

P P G G P
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Topological Insulator 101:



The boundary of TI with unitary symmetry G will have gauge 
anomaly once G is “gauged”.

Example: topological insulator with U(1) symmetry

Classification (Ryu, et.al., Kitaev, 2009)

U(1) gauge anomaly at the boundary:

P P PP P

Topological Insulator 101:
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Example: topological superconductor with SU(2) symmetry

Classification (Ryu, et.al., Kitaev, 2009)

SU(2) gauge anomaly at the boundary:

P P PG G

The boundary of TI with unitary symmetry G will have gauge 
anomaly once G is “gauged”.
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Topological Insulator 101:



Motivation:

Current understanding of interacting TI:
Interaction may not lead to any new TI, but it can definitely “reduce” 
the classification of TI, i.e. interaction can drive some noninteracting
TI trivial, in other words, interaction can gap out the boundary of  
some noninteracting TI, without breaking any symmetry,
Or equivalently, interaction can gap out the boundary without 
generating a fermion mass term.

1. Finding an application for interacting symmetry protected 
topological states, especially a non-industry application;

2. Many high energy physicists are studying CMT using high energy 
techniques, we need to return the favor.
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Weyl fermions:

Weyl fermions can be gapped out by Cooper pairing (Majorana mass):

Regularizing Grand Unified Theories on a lattice



Regularizing Grand Unified Theories on a lattice

Very high energy In Standard Model (higher than EW unification 
energy), every generation has (effectively) 16 massless Left Weyl
fermions coupled with gauge field: (spinor rep of SO(10))

This theory is difficult to regularize on a 3d lattice. Because on a 3d 
lattice, if we want to realize left fermions, we also get right fermions 
coupled to the same gauge theory

For example: Weyl semimetal has both left, and right Weyl fermions 
in the 3d BZ:



Regularizing Grand Unified Theories on a lattice

Very high energy In Standard Model (higher than EW unification 
energy), every generation has (effectively) 16 massless Left Weyl
fermions coupled with gauge field: (spinor rep of SO(10))

Popular alternative: Realize Weyl fermions on the 3d boundary of a 
4d topological insulator/superconductor

3d boundary, SM

Mirror sector

This theory is difficult to regularize on a 3d lattice. Because on a 3d 
lattice, if we want to realize left fermions, we also get right fermions 
coupled to the same gauge theory



However, this approach requires a subtle adjustment of the fourth 
dimension. If the fourth dimension is too large, there will be gapless 
photons in the bulk; if the fourth dimension is too small, the mirror 
sector on the other boundary will interfere.

Mirror sector

Key question: Can we gap out the mirror sector (Weyl fermions on 
the other boundary) without affecting the SM at all?

This cannot be done in the standard way (spontaneous symmetry 
breaking, condense a boson that couples to the mirror fermion mass)

3d boundary, SM
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A different question: Can we gap out the mirror sector with short 
range interaction, while

Mirror sector, 
gapped by interaction

If this is possible, then only the SM survives at low energy.

3d boundary, SM

Regularizing Grand Unified Theories on a lattice

All we need to do, is argue that the 4d bulk topological 
insulator/superconductor is nontrivial without interaction, but 
trivialized by interaction.
Similar logic by Wen, but very different way of dealing with 
interacting TI from us.



Regularizing Grand Unified Theories on a lattice

This means, in order to realize Weyl fermions without “mirror 
sector”, we must break the (anomalous) U(1) symmetry explicitly. 
The U(1) symmetry becomes an emergent symmetry at IR.



0d boundary of 1d TSC

Consider N copies of 0d Majorana fermions with time-reversal 
symmetry (boundary of N copies of Kitaev’s 1d TSC):

Breaks time-reversal

For N = 2, the only possible Hamiltonian is

But it breaks time-reversal symmetry, thus with time-reversal 
symmetry, H = 0, the state is 2-fold degenerate.

For N = 4, the only T invariant Hamiltonian is



0d boundary of 1d TSC

Finally, when N = 8, 

doublet doublet

GS fully gapped, 
nondegenerate

Thus, when N = 8, the Majorana fermions can be gapped out by 
interaction without degeneracy, and



0d boundary of 1d TSC

These 0d fermions are realized at the boundary of 1d TSC:

γ1 γ2
Trivial

TSC E

E

With N flavors, at the boundary

In the bulk:

This implies that, with interaction, 8 copies of such 1d TSC is trivial, 
i.e. interaction reduces the classification from Z to Z8.
Fidkowski, Kitaev, 2009

J1 J1

J2 J2



0d boundary of 1d TSC

For N flavors with N = 8n+k

J1/J2

1

int

trivial TSC

J1/J2

1

int

For N flavors with N = 8n, 
Fidkowski, Kitaev, 2009

N 1+1d gapless 
Majorana fermions

Gapped

N 1+1d gapless 
Majorana fermions



3d TSC

Short range interactions reduce the classification of the 3d TSC from 
Z to Z16, namely its edge (16 copies of 2d Majorana fermions) can 
be gapped out by interaction, with 
(Vishwanath, et.al. 2014, Kitaev, and other groups)

2d boundary of 3d TSC



Consider an enlarged O(2) symmetry.
When ϕ condenses/orders, it breaks T, breaks O(2), but keeps 

2d boundary of 3d TSC

Consider a modified boundary Hamiltonian (Wang, Senthil 2014):

All the symmetries can be restored by condensing the vortices of the 
ϕ order parameter. A fully gapped, nondegenerate, symmetric state is 
only possible if the vortex is gapped, nondegenerate.
A vortex core has one Majorana mode, and

With N = 16, interaction can gap out the 2d boundary with no deg.



2d boundary of 3d TSC

Dual theory for vortices and U(1) Goldstone mode:

When vortices are gapped, gauge field gapless, dual to the the
Goldstone mode of O(2) order parameter.

If vortex core is degenerate, dual theory is the CPn-1 theory, 
condensate of vortices must be degenerate.

With 16 copies of this 3d TSC, the vortex core at the boundary is 
gapped and nondegenerate. Thus we can condense the vortex, 
restore the symmetry, keep the spectrum gapped. The fermions 
acquire a local four-fermion interaction after integrating out ϕ. 



3d boundary of 4d TSC (Toy model of SM)

The 3d boundary of a 4d TSC with U(1) x T x Z2 symmetry:

These symmetries guarantee that no quadratic mass terms are 
allowed at the 3d boundary. So without interaction the classification 
of this 4d TSC is Z.

We want to argue that, with interaction, the classification is reduced 
to Z8, namely the interaction can gap out 16 flavors of 3d left chiral 
fermions without generating any quadratic fermion mass. 



3d boundary of 4d TSC (Toy model of SM)

The 3d boundary of a 4d TSC with U(1) x T x Z2 symmetry:

Now consider U(1) order parameter:

For N=1 copy, the vortex line is a gapless 1+1d 
Majorana fermion with T and Z2 symmetry 
when and only when N=8 (16 chiral fermions 
at the 3d boundary), interaction can gap out 
vortex loop without degeneracy.

U(1) symmetry can be restored by proliferating vortex loop.



3d boundary of 4d TSC (Toy model of SM)

The 3d boundary of a 4d TSC with U(1) x T x Z2 symmetry:

Now consider three component order parameter:

All the symmetries can be restored by 
condensing the hedgehog monopole of the 
order parameter. For N=1 copy, the monopole 
is a 0d Majorana fermion with T symmetry

Then when N=8 (16 chiral fermions at the 3d 
boundary), interaction can gap out monopole.



Pati-Salam Grand Unified Theory

16 left handed chiral fermions decompose into representations of 
SU(4) x SU(2)1 x SU(2)2 gauge groups as (4, 2, 1) and (4*, 1, 2)
For more details, please wiki.

Our goal is to argue that, a 4+1d topological insulator 
(superconductor) with SU(4) x SU(2)1 x SU(2)2 symmetry, whose 
boundary has 16 chiral fermions, without interaction has Z 
classification, but under interaction becomes trivial.

Mirror sector, 
gapped by interaction

3d boundary, 
PS GUT



Pati-Salam Grand Unified Theory

16 left handed chiral fermions decompose into representations of 
SU(4) x SU(2)1 x SU(2)2 gauge groups as (4, 2, 1) and (4*, 1, 2)
For more details, please wiki.

Our goal is to argue that, a 4+1d topological insulator 
(superconductor) with SU(4) x SU(2)1 x SU(2)2 symmetry, whose 
boundary has 16 chiral fermions, without interaction has Z 
classification, but under interaction becomes trivial.

To make this statement, there are two strategies:
1, argue the boundary can be gapped out without generating any 
fermion bilinear mass;
2, argue the bulk quantum critical point between trivial and TI 
phases can be gapped out by interaction; i.e. there is only one trivial 
phase in the bulk.
We will take the second strategy.



Pati-Salam Grand Unified Theory

Consider a 4+1d TI or TSC with SU(4) x SU(2)1 x SU(2)2
symmetry. Without interaction, it is 16 flavors of 4+1d integer 
quantum Hall state.

Goal: argue that the m=0 line can be gapped by interaction with 
SU(4) x SU(2)1 x SU(2)2 symmetry, and state m<0 can be smoothly 
connected to m>0, across m=0.

m > 0m < 0 m = 0

TITrivial

int



Pati-Salam Grand Unified Theory

The SO(4) symmetry can be restored by condensing 
the monopoles of the SO(4) vector. We need to argue, 
while tuning m, the spectrum of monopole never 
closes gap when and only when there is interaction. 

Strategy (sketch): 
spontaneously break SU(2)1 x SU(2)2 symmetry by cooper pair. The 
cooper pair will be an SO(4) vector. Recall SO(4) ~ SU(2)1 x SU(2)2

Consider a 4+1d TI or TSC with SU(4) x SU(2)1 x SU(2)2
symmetry. Without interaction, it is 16 flavors of 4+1d integer 
quantum Hall state.



Pati-Salam Grand Unified Theory

The spectrum of monopole: four localized fermion modes, f1 … f4.

Effective Hamiltonian in the monopole core:

The monopole spectrum changes smoothly without closing gap by 
tuning m, thus the system never closes gap after condensing 
monopoles, and restoring all the symmetries.

m > 0m < 0 m = 0



Pati-Salam Grand Unified Theory

The monopole spectrum changes smoothly without closing gap by 
tuning m, thus the system never closes gap after condensing 
monopoles, and restoring all the symmetries.

m > 0m < 0 m = 0

TITrivial

int

The spectrum of monopole: four localized fermion modes, f1 … f4.

Effective Hamiltonian in the monopole core:



Pati-Salam Grand Unified Theory

This four fermion interaction will lead to proton decay at low 
energy. But, weaker than proton decay of SU(5) GUT.

Prediction: if this mechanism is going to work, the four fermion 
interaction necessarily breaks the global (anomalous) U(1) 
symmetry down to Z4. i.e. the universe is a charge-4e SC.

The detailed 4d lattice Hamiltonian can be found at
You, Xu, arXiv:1412.4784
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