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Resurgence and quantum field theory
Gerald introduced the notion of a ‘resurgent transseries’ 

where the series are asymptotic, but           remains well-
defined thanks to devious conspiracies between terms

This talk: how resurgence works in asymptotically-free QFTs

Involves many questions not present in QM!



Resurgence and quantum field theory
Involves many questions not present in QM!

(1) Couplings usually run, so which ‘λ’ do we mean?

(2) What can we say about pn for large n?

How does a depend on the number of ‘colors’ N?
QM analogy might suggest a ~ (instanton action), so that a ~ N1

and there’s evidence that a ~ N0. So do we need fractional instantons?
But some QFTs have no instantons in the first place… 
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Resurgence and quantum field theory
Involves many questions not present in QM!

(2) What can we say about pn for large n?

(3) What are the relevant non-perturbative (NP) saddles?

(4) How to do reliable semiclassical calculations of NP phenomena?

Turns out that all of these issues are related.

Usually the NP physics happens in a strongly-coupled domain…

(1) Couplings usually run, so which ‘λ’ do we mean?



Outline

Explain the notion of adiabatic compactification as a tool to 
systematically study NP physics of asymptotically-free QFTs

Review what is believed — and what is known — about 
large-order behavior of perturbative series in QCD-like QFTs

Renormalon ambiguities, and the mass gap, are tied to the 
presence of ‘fracton’ saddle points — fractional instantons.

Resurgent structure in QFTs is realized via cancellation 
of ambiguities in resummation of perturbative series 

against ambiguities in multi-fracton amplitudes

Works even in theories without topological instantons



Perturbation theory at large order on Rd

Widespread belief: in asymptotically-free QFTs with a mass 
gap Δ, with one-loop ’t Hooft-coupling beta function β0

Called an IR renormalon divergence, and drives 
appearance of apparent resummation ambiguities of order

But why do people believe this?

‘t Hooft,
1979

If you buy this, it suggests that renormalons are 
related to confinement and mass gaps

Reminder:

in SU(N) YM

Clay Prize



Common heuristic argument for renormalons
Review by 

Beneke 
1998

Inspired analysis of inspirational subset of 
high-order diagrams for QCD

Q Qk

If Nf >> Nc, these are the dominant diagrams.

n 
bubbles

Guess that 1/Nf corrections conspire to give

… and argue that it should be right even when Nf = 0, for YM theory



Common heuristic argument for renormalons

You might not find the historical argument entirely persuasive.
Indeed, it can give misleading results!

But the result that renormalons exist, in the sense that

appears to be correct.

Dunne, Shifman, 
Unsal, in progress



Systematic evidence for renormalon divergences
(1) Exact solutions of some 2D asymptotically free QFTs 
— non-linear sigma models on R2 — show renormalons.

Integrability or large N techniques give 
exact expressions for observables

Expanding in λ, large order behavior turns out to be

in every model examined so far.
PCM:

Kazakov, Fateev, 
Wiegmann, 1990s

O(N), in context of OPEs
F. David, 1980s; Novikov, Shifman, 

Vainshtein, Zakharov 1980s;

O(N) and resurgence,
Basar, AC, Dunne, 

Dorigoni, Unsal, to appear 

(2) Analyses using adiabatic compactifications of 4D gauge 
theories and 2D sigma models again implies renormalons.

Explaining this statement is the rest of the talk.



Making asymptotically-free QFTs calculable
Asymptotically free QFTs are typically strongly coupled at low energies

Under what conditions could they become weakly-coupled?

If there are scalar fields around, could use the Higgs mechanism

Then if the VEV is large compared to Λ, IR becomes weakly-coupled

Of course, this is why the electroweak part of SM is calculable
Also an important feature in analysis of SUSY gauge theories

But we want to study QFTs, like QCD, 
which don’t include such scalar fields.

What else could one do?



Control via compactification?

Benefit: when S1 size β << Λ, theory becomes weakly-coupled

Another way to get control over an asymptotically-free QFT 
with a strong scale Λ on Rd is to compactify it to Rd-1xS1

Rd-1 S1

small β large β
F/N2 ~ 1 F/N2 ~ 0

Heavy cost #1: often the small-volume theory is 
separated from large volume phase by a phase transition

Matrix 
QFTs

With thermal 
BCs, β = 1/T



Control via compactification?

Heavy cost #2: small-β system ‘forgets’ the 
characteristic scale Λ of the Rd system

Mass gap Δ
Large β Small β

In the small-β regime, the scales are set by β, rather than Λ. 
NP physics of Rd system dramatically altered by small β limit

Benefit: when S1 size β << Λ, theory becomes weakly-coupled

Another way to get control over an asymptotically-free QFT 
with a strong scale Λ on Rd is to compactify it to Rd-1xS1

Rd-1 S1

With thermal 
BCs, β = 1/T



Control via adiabatic compactifications

Are there non-thermal compactifications which 
keep ZN or its analogs unbroken, for any S1 size?

Large volume (low T) limit of e.g. QCD-like SU(N) gauge 
theories characterized by unbroken center symmetry

ZN center symmetry is always broken at high temperature

Yes!
SU(N) YM + NF adjoint fermions on a spatial S1xR3;
Double-trace-deformed Yang-Mills theory on S1xR3;

CPN-1 model on S1xR with ZN twisted BCs;
SU(N) principal chiral model on S1xR with ZN twisted BCs;

Kovtun, Unsal, Yaffe 2007; Unsal, Yaffe 2008; Shifman, Unsal 2008; 
Dunne, Unsal 2012; AC, Dorigoni, Dunne, Unsal 2013; …

…



Control via adiabatic compactifications
Motivates working with non-thermal compactifications which 

preserve the center symmetry, or its analogs, for any S1 size L.

What about the costs we saw in thermal case?

Benefit: when L << Λ, theory becomes weakly-coupled!

(1) By construction, no deconfinement-type phase transitions.

(2) Adiabatic small-L limit retains power law dependence on Λ.

Mass gap Δ

Large L Small L

As a result, adiabatically-compactified small L theories 
become an excellent test environment for resurgence theory.



Coupling flow with adiabatic compactification

The NLΛ << 1 regime gives a weakly-coupled theory
Physics is very rich - mass gap, renormalons present at small N L!

large N 
volume 

independence

Semiclassically 
calculable 

regime

Flow for NLΛ ≪ 1

Flow for NLΛ ≫ 1

Λ (N L)-1
Q

λ(1/NL)

1
λ



Worked example of resurgence in QFT
Rest of the talk will discuss the 2D SU(N) Principal Chiral Model

PCM is interesting for two reasons.  First, many similarities to QCD:

Fateev, 
Kazakov, 

Wiegmann

Integrable, M = R2 S-matrix known, so easier than QCD

•Asymptotically free

•Dynamically generated mass gap

•Matrix-like large N limit

•Large N ‘deconfinement’ transition at high T

•Has renormalon divergences

Similar discussion can be given for e.g. 
2D CPN-1 model, or 4D gauge theories

Argyres, Unsal 2012;
Dunne, Unsal 2012

AC, Dunne, 
Dorigoni, 

Unsal
2013



Worked example of resurgence in QFT

But p2[SU(N)] = 0, so no instantons, unlike QCD!

We will see that resurgence theory puts apparent absence 
of NP saddles in tension with renormalon ambiguities.

Guided by resurgence, missing saddles have been found, and yield 
insights into NP physics behind renormalons and the mass gap

AC, Dunne, 
Dorigoni, 

Unsal
2013

Rest of the talk will discuss the 2D SU(N) Principal Chiral Model



Finding a calculable regime
To explore resurgence structure of PCM, need to find a 

smooth weakly-coupled limit where renormalons survive.

For small enough L, weak coupling guaranteed by asymptotic freedom

Our approach is to put the theory on M = Rtime x S1(L)

With periodic boundary conditions, S1 would be a thermal circle!

small L large L
F/N2 ~ 1 F/N2 ~ 0

In PCM, large N phase transition, finite N cross-over
Resembles confinement/deconfinement transition in 4D YM!

Free energy F



Twisted boundary conditions
There is an adiabatic compactification for the PCM, but it 

involves twisted (non-thermal!) boundary conditions.

But when L << L-1, the choice matters!

Consider twisted BCs using the SU(N)LxSU(N)R symmetry

Claim: unique choice of HL, HR such that physics 
appears to be adiabatically connected to large L limit

When L >> L-1,  choice of BCs doesn’t matter thanks to the mass gap

small L large L



Adiabatic compactification

In general, the partition function depends on HL,R

What are the desirable ‘adiabaticity conditions’ in terms of Z?

(A)  A free energy scaling as F/N2 ~ 0 at large N

(B) Insensitivity of theory to changes in BCs

The large L theory has the key features

Would like to maintain both of them, to the extent possible, at small L.



Adiabaticity conditions

Total insensitivity to BCs is not possible at small L. 
Best we can do is demand

Our task:  compute F(L; HA, HV) at small L, where theory is 
weakly coupled, and look at large N scaling of extrema

A

@
⇥
V�1

logZ(L)
⇤

@HV
= hJV

x iHV ,HA = 0

@
⇥
V�1

logZ(L)
⇤

@HA
= hJA

x iHV ,HA = 0

Free energy-
extremizing BCsB

2HV,A = HL ±HRIn terms of these conditions translate to

Stay in 
‘confining’ phase



Adiabatic compactification

v = 0,1 for 
N odd, even

ZN-symmetric BCs give desired adiabatic small-volume limit, 
with NLΛ as a control parameter. 

Unsal, Yaffe; 
Shifman, Unsal; ...

Related construction of an adiabatic 
small L limit known for 4D gauge theories

‘Confinement’ even at small L!

Result of this calculation is that desired extremum 
is ΩA = 1, while ΩV has ZN center symmetric form

Goes to 
zero at 
large N



Perturbation theory at small L

On R2, integrability calculations of Kazakov, Fateev, Wiegmann imply:

If small-L limit is adiabatic, expect size of renormalon ambiguity 
to move by order-1 amount as L goes from large to small.

Consider dependence of ground state energy on λ = g2N.  

For small L, 2D PCM describable via a 1D EFT: quantum 
mechanics with a ZN-symmetric background gauge field

This will let us make concrete statements about large-order behavior…



SU(2) 
Example

Hopf 
parametrization
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Imprint of ZN twisted BCs: x=2p/(NL)=p/L
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Perturbation theory at small L

Compute perturbative expansion for ground state energy:



Large order structure of perturbation theory

Factorially growing and non-alternating series!

Not Borel 
summable!

Stone, 
Reeve 
1978

4 6 8 10 12 n

0.5

1.0

1.5

2.0
pnHexactLêpnHAsymptoticL

In QM, calculating large orders in 
perturbation theory is doable.  Result:



Non-perturbative ambiguity

Renormalon ambiguities survive the adiabatic small L limit!

Resurgence theory: P ambiguity must cancel against NP ambiguity

plus more intricate relations at higher orders

Im

⇥S±E(g2) + [F ¯F ]±
⇤
= 0, up to O �

e�4SF
�

S±E(�) =
Z

C±

dte�t/g2

BE(t)

= ReSE(�)⌥i
32⇡

�
e�16⇡/�

But what are the relevant NP saddle points in the PCM?

Recall p2[SU(N)] = 0…



Non-topological saddle points
Finite-action `uniton’ solutions of PCM 2nd order EoMs are known

Construction uses observation that CPN-1 is a geodesic submanifold of SU(N)

CPN-1 instantons lift to uniton solutions in SU(N) PCM

U(z, z̄) = ei⇡/N (1� 2P) P =
v · v†

v† · v
v(z), z = x1+i x2 is the CPN-1 instanton in homogeneous coordinates

Uhlenbeck 1985...

Contrast with instantons, which solve 1st order self-dual EoMs.



Fractons
Uniton appearance with ZN-twisted BCs depends on size modulus

SU(2)

SU(3)

Unitons fractionalize into N `fracton’ constituents on small S1

AC, Dorigoni, Dunne, Unsalsee also Smilga, Shifman in 
Schwinger model, 1994



Fractons

✓(t; t0) = 2 arcCot

h
e�⇠(t�t0)

i

¯✓(t; t0) = ⇡ � 2 arcCot

h
e�⇠(t�t0)

i
ϕ1 = const
ϕ2 = const

As usual, SU(N) solutions follow by embedding into SU(2)’s

N-1 fractons associated to N-1 simple roots of su(N)
The other - called KK fracton -  associated to ‘affine root’

N types of minimal-action fractons in SU(N)

AC, Dorigoni, Dunne, 
Unsal 2013, 2014

KK fractons in PCM appear same way as KK monopoles in 
compactified YM theories with non-trivial Wilson lines

Explicit solutions for SU(2):



The sum over finite-action configurations

Small-L theory weakly coupled, dilute fracton gas approximation is valid

hO(�)i =
1X

n=0

p0,n�
n +

X

c

e�Sc/�
1X

k=0

pc,n�
n

How can NP saddles give ambiguous contributions to path integral?

This is the typical separation 
between tunneling events

t = -∞ t = +∞t1 t2

θ = 0

θ = π

θ = 2π

LN



Contribution from fracton-fracton events

t = -∞ t = +∞t1 t2

θ = 0

θ = π
t1 - t2 is a 

quasi-zero mode 

Action depends on t1 - t2, but only exponentially weakly for large t1 - t2.

θ = 2π

Existence of quasi-zero fluctuation modes gives 
rise to existence of correlated tunneling events

t1 + t2 is a 
zero mode

Pairs of fractons are quasi-saddle-point!



Correlated fracton-fracton events

t* =
l Log@32 pêlD

32 „ p

t

I*

IHtL

correlated configuration 
quasi-zero mode 

integral is localized

fracton 
1-event

correlated 
2-event - a ‘bion’

uncorrelated 
2-event

Scale 
separation

Fracton gas 
is dilute!



t* =
l Log@32 pêlD

32 „ p

t

I*

IHtL

amplitude:

Correlated fracton-fracton events are unambiguous

Correlated fracton-fracton events



Contribution from fracton-anti-fracton events
Sometimes there are events which 

involve tunneling back and forth

t = -∞ t = +∞t1 t2

θ = 0θ = 0

θ = πθ = π

t1 - t2 is still a quasi-zero-mode

Treating the quasi-zero modes for fracton-anti-fracton 
events is subtle.  This is where the ambiguities live!



Trouble with fracton-anti-fracton events
The anti-fracton-fracton interaction is attractive!

So makes no sense to take integral as is, fracton-anti-
fracton configurations only make sense for large 𝛕!

τ = 1
τ

I(τ)

Diluteness 
approximation 

fails here
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Trouble with fracton-anti-fracton events
The anti-fracton-fracton interaction is attractive!

So makes no sense to take integral as is, fracton-anti-
fracton configurations only make sense for large 𝛕!

τ = 1
τ

I(τ)

This is a feature, 
not a bug!

Diluteness 
approximation 

fails here



Making sense of fracton-anti-fracton events

Systematically integrating over the quasi-zero 
mode turns out to need this machinery

Each ‘thimble’ is a steepest-descent 
manifold attached to a critical point

Decomposition of path integrals integration cycle into the basis of 
Lefshetz thimbles appears to geometrize resurgent transseries.

Re 𝛕

Im 𝛕

Re 𝛕

Im 𝛕

Basar, AC, Dunne, 
Dorigoni, Unsal, 

coming soon

Fracton-fracton
integration cycle

Pham 1983; 
Witten 2010

Fracton-anti-fracton
integration cycle(s)



Contribution of fracton-anti-fracton events

Fracton-anti-fracton events give an ambiguous contribution:

Systematically integrating over the quasi-zero 
mode turns out to need this machinery

Basar, AC, Dunne, 
Dorigoni, Unsal, 

coming soon

(More precisely, the contribution depends 
on arg λ = 0± , as does perturbation theory.)



Cancellation of ambiguities

Only the sum of P and NP contributions is physical.

Im

⇥S±E(g2) + [F ¯F ]±
⇤
= 0, up to O �

e�4SF
�

If QFT observables are actually resurgent 
transseries, resurgence theory predicts:

Preceding results implies that this works in PCM

Leading renormalon ambiguities of perturbation theory 
cancel against ambiguities in saddle-point sum

Illustrates that exact information about NP physics is 
present in perturbation theory, albeit in coded form!



What we learned so far…

In semiclassical domain, renormalon ambiguities systematically 
cancel against contributions of non-BPS NP saddles

Even when there’s no topology, resurgence predicts existence of 
NP saddle points with specific properties, which can then be found.

All results so far fit conjecture of resurgent nature 
of observables in QFTs with weak-coupling limits

Renormalons closely related to mass gap, as ’t Hooft dreamt

Fracton tunneling events give rise to mass gap of the model…
… and fracton-anti-fracton events give rise to the renormalons



Vital to explore relations to analytic continuation of path integrals

Resurgence theory yields major new insights into the 
non-perturbative structure of quantum field theories

May get better understanding of QFTs with complex actions

Many applications seem likely

Resurgence theory and Lefshetz thimble 
technology play vital role in seeing how instantons 

appear in real-time Feynman path integrals.
AC, Unsal 2014

Improved understanding of connections 
between strong and weak coupling regimes

AC, Koroteev, 
Unsal 2014

Applications of resurgence in SUSY QFTs
Aniceto, Russo, 
Schiappa 2014; 

Basar, Dunne 2015

The work has just begun.  Lots of fun things to do!


