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Impact of Interferences on Connectivity
in Ad Hoc Networks
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Abstract—We study the impact of interferences on the connec-
tivity of large-scale ad hoc networks, using percolation theory. We
assume that a bi-directional connection can be set up between two
nodes if the signal to noise ratio at the receiver is larger than some
threshold. The noise is the sum of the contribution of interferences
from all other nodes, weighted by a coefficient , and of a back-
ground noise.

We find that there is a critical value of above which the network
is made of disconnected clusters of nodes. We also prove that if
is nonzero but small enough, there exist node spatial densities for
which the network contains a large (theoretically infinite) cluster
of nodes, enabling distant nodes to communicate in multiple hops.
Since small values of cannot be achieved without efficient CDMA
codes, we investigate the use of a very simple TDMA scheme, where
nodes can emit only every th time slot. We show that it achieves
connectivity similar to the previous system with a parameter .

Index Terms—Ad hoc networks, CDMA, connectivity, interfer-
ences, percolation, TDMA.

I. INTRODUCTION

RANDOM graphs associated with the Poisson Boolean
model and percolation properties of these graphs have

been considered in [1] for analyzing the connectivity of ad
hoc networks. Within this context, the Poisson Boolean model
assumes that the stations are located according to a planar
Poisson point process, and that each station has an independent
random power, identically distributed for all stations.

A more physical model based on the signal to interference
ratio was used within the context of ad hoc networks in [2]. In
this last paper, which departs from a deterministic and finite
population setting, all stations are assumed to have the same
power, and some attenuation function is given. Station can
receive a signal from station if the ratio of the power it re-
ceives from to the total power received from all other stations
is above a threshold.

The same physical model was analyzed in [3] in the infi-
nite plane case under Poisson assumptions within the context
of CDMA networks. The corresponding coverage process has
connection with Poisson shot noise processes.
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The aim of the present paper is to bring all these approaches
together and to study the connectivity of infinite ad hoc networks
under the physical model alluded to above. The parametric set-
ting will be that of an homogeneous Poisson point process. Our
main goal within this context is to learn whether the percolation
phenomenon that was established in [1] for the case without in-
terference still holds within this more realistic context.

By analogy with CDMA networks, we will introduce some
orthogonality factor , which can vary from 0 to 1, and which
stems from the imperfect orthogonality of the codes used in
CDMA. The case with (perfect orthogonality) boils down
to the case considered in [1].

As we will see, there are essential differences between the
case and . In some natural cases, for the same
patterns, the first case could have an infinite component of the
connectivity graph, whereas the second one could have no infi-
nite component, or even no connectivity at all.

The main result of the paper is that under attenuation func-
tions with finite support, percolation holds under conditions
similar to those of the Boolean model of [1] provided the or-
thogonality factor is small enough. In this sense, connectivity
of ad hoc networks scales well with the size of the network
even in the case of models that take interferences into account.
The question whether this also holds true for attenuations of
the type considered in practice (e.g., power functions with
parameter between 3 and 6), over an infinite support, is still an
open problem at this time.

The type of random graphs that are introduced in the paper
are of independent interest. In particular, this class of random
graphs which are built on the points of a Poisson point process,
may simultaneously have infinite components, bounded range
(each edge is of bounded length), and bounded degree (each
vertex is of bounded degree).

As is it an essential feature, connectivity has received quite a
lot of attention in the previous decade already, in the context of
packet radio networks, and has gained renewed interest recently
in the context of ad hoc and sensor networks. Most results apply
to the full connectivity of a network made of a finite number of
nodes. A recursive formula giving the average number of hops
between two connected nodes is found in [4], whereas the prob-
ability that a given number of nodes on a finite interval are all
connected is computed in [5]. In the 2-dim. setting, relations
between -connectivity (the property that the graph has a min-
imal cutset equal to ) and the node degree are studied in
[6], whereas this problem is addressed when the transmission
powers of the nodes are different in [7]. When the number of
nodes tend to , and when the distance below which nodes
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can connect decreases at a rate slower than , Gupta
and Kumar have proven that all nodes are almost surely con-
nected [8]. In this paper, we assume that the number of nodes
is not fixed nor on a finite area, but that they are given as points
of a Poisson process over the plane . We do not make assump-
tions on its intensity, so that our results also apply to low density
areas. Since the number of nodes is not bounded, some of them
will be disconnected. The problem is then related to percolation
theory, which is to find the probability that a node belongs an in-
finite cluster of nodes. Since the pioneering work of Gilbert [9],
which started the field of continuum percolation, the exact value
of this probability is still an open problem. Some bounds on the
critical intensity below which it is zero have been obtained
analytically in [9]–[11] for the Boolean Poisson Model, and nu-
merically by many others [12]. Percolation of a clustered wire-
less network, in which the users (clients), who are distributed
according to a Poisson process, are all covered by base stations
that can connect to each other by a wireless link, is studied in
[13]. This model reduces to the Poisson Boolean Model if one
base station is placed at each client. To our knowledge, the per-
colation problem has not been addressed so far when interfer-
ences from other nodes are taken in account, which is the goal
of this paper.

This paper is structured as follows. Section II describes the
physical model considered for transmission between two nodes,
from which the Poisson Signal To Interference Ratio Graph
(STIRG) is derived. We obtain a bound on the node de-
gree, which shows that is is too large, the network is surely
disconnected. We also show that for some attenuation functions,
no connection is possible for any . It is important to know
if a small but nonzero value of still enables long range con-
nectivity. In Section III, we prove that it is fortunately the case.
We begin this section by some qualitative observations on sim-
ulations, and then formally prove our main result. We also drive
several bounds on the critical threshold, and describe its asymp-
totic behavior for large node densities.

Since percolation may hold for very small values of ,
narrowband communications may not be possible if we let all
nodes emit simultaneously. A remedy is to use TDMA, so that
each node is allowed to emit every th time slot. We show in
Section IV that a very simple TDMA scheme achieves con-
nectivity similar to the previous one, with . We prove for-
mally that if the node density is sufficiently high, and whatever
the value of is, one can find such that percolation occurs.
Finally, we draw some conclusions and future perspective in
Section V.

II. MODEL

We consider a multiple-hop ad hoc network where nodes are
distributed according to a Poisson point process of constant spa-
tial intensity . Depending on its location, number of neighbors,
and battery level, each node will adjust its emitting power
within a given range , where is the maximal power of a
node, which is finite. The power of the signal emitted by Node

and received by Node is , where and are

the positions of Node and in the plane, respectively, and
is the attenuation function in the wireless medium.

We assume that Node can transmit data to Node if the
signal received by is strong enough, compared to the thermal
noise. Formally, this condition is written as

(1)

where is the power of the thermal background noise and
is the signal to noise ratio required for successful decoding. The
coefficient is the inverse of the processing gain of the system,
it weights the effect of interferences, depending on the orthog-
onality between codes used during simultaneous transmissions.
It is equal to 1 in a narrowband system, and is smaller than 1
in a broadband system that uses CDMA. The physical model of
Gupta and Kumar [2] assumes ; other models [14] allow

to be smaller than 1.
Similarly, Node can transmit data to Node if and only if

(2)

From conditions (1) and (2), we can build an oriented graph
that summarizes the available links between nodes. In order to
define connected components (or clusters), we have to introduce
a symmetric relation. In this paper, we choose to neglect uni-
directional links, which are difficult to exploit in wireless net-
works [15]. In other words, we declare that Node and Node
are directly connected if and only if both (1) and (2) are satis-
fied. This new relation leads to the definition of a nonoriented
random graph associated with the Poisson point process. This
Poisson signal-to-interference ratio graph (STIRG) is the main
object of study in the present paper.

As our model has much more parameters than degrees of
freedom, we will focus on the node density and the orthogo-
nality factor . The other parameter are supposed constant in the
sequel. We will thus denote by the connectivity graph.

A. Bound on the Degree of the Nodes

In the following theorem, we will prove that if , the
number of neighbors of each node is bounded from above (note
that this is not the case in the Boolean Model with ).

Theorem 1: Each node can have at most neighbors.
Proof: Pick any node (called hereafter Node 0), and let

be the number of its neighbors (i.e., the number of nodes to
which Node 0 is connected). If , the claim is trivially
proven. Suppose next that , and denote by 1 the node
whose signal power received by Node 0 is the smallest but is
nonzero, namely is such that

(3)

Since it is connected to Node 0, (1) imposes that

(4)
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Taking (3) into account, (4) implies that

from which we deduce that

In CDMA cellular networks, this kind of bound is known
under the name of pole capacity (see, e.g., [3], [16]).

As a consequence of Theorem 1, we see that if ,
each node has at most one neighbor. This is a very general and
restrictive condition, that imposes the network to use efficient
spread-spectrum encoding in order to keep small, or to intro-
duce a scheduling between nodes to avoid having them emitting
all the same time. We will investigate such a scheme in Sec-
tion IV.

B. Shot-Noise

The sum in the denominator of (1) is a random variable that
depends on the position of almost all nodes in the network. We
can write it as where

(5)

is the interference contribution. This kind of variable is called
a Poisson shot-noise. As it is an infinite sum, it may diverge to
infinity, making connections impossible.

If we assume that the sequence is uniformly bounded
from below by a strictly positive constant, and that has the
form where is a nonincreasing function of
, the necessary and sufficient condition for the sum

to be a.s. finite is given in [17]

for a sufficiently large (6)

This condition remains valid if but the sequence
is i.i.d and independent from the point process, for

some (like in Section IV).
We notice that for , the integral in (6) is divergent

and thus no connection is possible in this case whenever .
By letting in (6), we obtain the condition for inte-

grability, which is stronger. This last property holds for all sta-
tionary point processes with finite intensity see e.g., [18], and in
particular in the homogeneous Poisson case.

C. Attenuation

For the attenuation, the most common function is

(7)

with ranging from 3 to 6. It makes sense to assume attenuation
to be a bounded function in the vicinity of the antenna. The
following two functions:

•
•

with are bounded modifications of the latter considered
in [3].

III. PERCOLATION

As our model is ergodic (it is a deterministic construction on a
Poisson point process), the probability that there exists a cluster
of infinite size1 is either 0 or 1, depending on the parameters
and . In the first case, as there are a.s. only finite clusters, the
network is said subcritical, whereas in the second case, it is said
supercritical.

In the subcritical phase, long range connections in multiple
hops are not possible, contrary to the supercritical phase. It is
thus a crucial property to establish in a network.

We begin this central section by the much simpler Boolean
model, which is a particular case for our model when .
We then make some preliminary observations on simulations
to show the difference between the graphs obtained when the
interferences are neglected (which amounts to set ) or not
(when ). In a third step, we prove that percolation occurs
(i.e., an infinite cluster exists) for small but nonzero values of .
We finally give some asymptotic results for large node densities.

A. Existence of a Percolation Threshold for

Let us first note that if we let , the model described in
Section II becomes equivalent to a generalized Boolean model,
where two nodes are connected if and only if they are in a ball of
radius (which can be a deterministic or random value), inde-
pendently from all the other nodes. Assuming all nodes emit at
the maximum power , this radius is then constant and found
from (1) to be equal to

such that

For example, for the attenuation function (7), this radius reads
. This is the model we have studied in [1],

and for which many results from continuous percolation theory
apply [10]. The most important one is mentioned above, namely
that there is a critical density , above which the graph contains
an infinite connected component.

B. Some Observations on the Graph With

If , it is clear that for the same realization of the spatial
point process giving the position of the nodes, the graph ob-
tained with misses some edges in the graph obtained
with . In other words, . As a result, it

1We conjecture moreover that whenever it exists, the infinite cluster is also
unique. The proof of this conjecture is out of the scope of this paper.
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Fig. 1. Example of graph G(0; �) with no interference (Boolean Model). As
the node density is supercritical (� > � ), most of the nodes belong to the same
connected component. (This simulation was run in a square of 65 536� 65 536
pixels with parameters � = 9:31_10 , � = 1,  = 0, N = 1, P =
100000 8 i.)

Fig. 2. Example of graph G(; �) with interferences ( = 0:02). This
simulation was run with the same parameters as in Fig. 1, except  that is
now nonzero. Due to the interferences, the graph is split into many small
components.

is not sure that percolation still occurs for nonzero values of .
At least, for , we are sure that is always subcrit-
ical. However, for , we know that:

1) For , the network is supercritical;
2) For , the network is subcritical.

Therefore, there exists a critical value at
which one observes a phase transition. The Section III-C will
prove that is strictly positive for sufficiently large values
of .

We have computed by simulation the value of the percola-
tion threshold , with . The simula-
tion results are shown in Figs. 1–4. In the simulations, all nodes

Fig. 3. Critical value of  as a function of the node density �. The curve shows
the critical value of  below which the network percolates. [The parameters of
this simulation are � = 1, N = 10 and P = 10 8 i].

Fig. 4. Barely supercritical graph with interferences. This simulation was run
with the same parameters as in Fig. 2, except that the node density is higher
(� = 2:79_10 ). The graph percolates despite the interferences because here
 <  (�). One can observe that fewer edges are needed to achieve percolation
than in Fig. 1.

emit with the same power . We observe in Figs. 1 and 2 that
. We observe in Fig. 3 that exhibit a

maximum at a certain density . Below , increasing the node
density helps for connectivity, whereas after the maximum, the
impact of interferences becomes preponderant, and be-
comes decreasing. Fig. 4 illustrates the percolation phenomenon
with slightly smaller than .

C. Percolation for Nonzero Values of

We have shown above that if exceeds some finite, positive
critical value, percolation does not occur. We want now to show
that percolation can occur for nonzero values of . We make the
simplifying assumption that every node emits at maximal power

: . This corresponds to the worst power assignment
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for the interfering communications. We need additional assump-
tions on the attenuation function . In this subsection, we re-
strict ourselves to nonincreasing, isotropic attenuation functions
that have the following additional properties:

(8)

(9)

for some and .
We will then prove the following main theorem.
Theorem 2: If the isotropic attenuation function verifies

assumptions (8) and (9), then there exist and a function
such that

• for all ;
• if and , there exists a.s. an infinite

connected component in the graph .
This theorem implies therefore that communication between

distant nodes is still possible despite interferences. The proof of
this central theorem is quite lengthy, and is therefore divided in
several intermediate results. The first step is to map the process
defined on the continuous plane onto a discrete grid (lattice)

, whose edges are declared open if certain properties of the
Poisson process in their neighborhood are met. The second and
more lengthy step is to prove bond percolation, that is, the exis-
tence of an infinite path made of open edges, on the dual lattice

. The third step is then straightforward, as the reverse map-
ping allows us then to conclude that the network indeed perco-
lates and has an infinite cluster on the continuous plane . The
reason for carrying most of the proof on the discrete lattice
is that we can then make use of the larger collection of results
found in the literature [19] on discrete bond percolation than on
continuous percolation.

Step 1: mapping of the graph on a lattice
We begin by constructing a square lattice, denoted by over

the plane, with edge length . Let be the dual lattice of ,
obtained by putting a vertex in the center of every square of ,
and an edge across every edge of . As is square lattice,
is simply the same lattice shifted by horizontally and verti-
cally, as depicted in Fig. 5. Note that there exists a one-to-one
relation between the edges of and the edges of . Further-
more, we set the origin of the plane at a vertex of , without
any loss of generality.

Let us now consider the original Poisson point process over
the plane. Each square of Lattice contains in average
points. We will study bond percolation on Lattice . To do this,
we will declare some edges open and others closed depending
on the realization of the underlying Poisson point process.

In Lattice , we divide again each square into subsquares
of size , where is given by

(10)

This value has been chosen so that implies that
. Next, we introduce a second integer parameter

defined by

(11)

Fig. 5. Lattice L (plain) and its dual L (dashed).

Fig. 6. Conditions for a to be open: both squares in the middle (bold line) must
be populated, and the total number of points in the 12 squares must be at most
N .

Because of (9) and (10), one can check that . Combining
(9) with (10) and (11), we obtain the following inequality

(12)

which is more restrictive than the left inequality in (9).
We can now formally define our discrete percolation model

from the original, continuous one by introducing a bunch of
definitions. We designate by the term “point” the location of
a node in the original network, to avoid any confusion with a
vertex in the grid .

Definition 1: A square of is said to be populated if all
its subsquares contain at least one point.

Definition 2: An edge of is said to be open if the fol-
lowing conditions are fulfilled:

• both squares adjacent to are populated;
• the total number of points located in the two squares ad-

jacent to and all their direct neighbors (that is, all the
squares having at least one vertex in common with these
two squares, as depicted in Fig. 6) is less than or equal to

.
Definition 3: An edge of is said to be open if and only

if the corresponding edge of is open.
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Definition 4: A path (in or ) is said to be open (resp.
closed) if all edges forming this path are open (resp. closed).

The above definitions have been chosen such that an open
edge guarantees connectivity in the continuous model (see
Lemma 4 hereafter). In fact, the first condition ensures a
homogeneous population in the squares, whereas the second
condition puts a limit to the interference contribution. It is very
important to notice that the main difference between this model
and the usual discrete percolation models is that here the state
of the edges (open or closed) are not independent from each
other.

Step 2: percolation on lattice
We want to know whether percolation occurs in our newly

defined discrete model, namely if one can find an infinite open
path in . Let be the probability that an arbitrary edge is
closed. Actually, is pretty difficult to compute, but we show
in Lemma 2 that can be made arbitrarily small by choosing
suitable values of and . As a first step, we introduce the fol-
lowing simple but useful lemma:

Lemma 1: Let be a Poisson random variable of parameter
, and a positive constant. Then

and

Proof: Using Chebyshev inequality

Thus

which implies the above results.
We can now prove that can be made as small as necessary.
Lemma 2: For any , there exists and
such that

Proof: Let us find a lower bound to the probability
that an arbitrary edge of is open:

an edge of is open

subsquares of surface have

at least point each and a surface of

including these subsq

has no more than pts

subsquares have between

pts each and a surface of

excluding these subsq, has no more than

points

a subsq of surface has between

and pts

a surface of has

no more than pts

where and are two independent Poisson random variables
of parameter and , respectively. We take now

(13)

for some . If , according to (11), we have

and thus

It follows from Lemma 1 that

For any , there exists thus such that if ,
. As is a decreasing function of , the result holds also

when .
We have now to cope with the dependence between edges. We

observe first that our model is -dependent, with , which
means that if the graphtheoretic distance between two edges is
greater than 3, they are independent (see [19, p. 17]). We can
then apply results in [20] and prove that our model stochasti-
cally dominates an independent model. Super-criticality of the
independent model thus implies supercriticality of our model.

However, to keep this paper self-contained, we propose here a
simple and constructive way to prove the existence of an infinite
open path in our particular case. Moreover, this method provides
us an explicit lower bound on the critical value of , which we
will exploit in Section III-D. We start with the following lemma,
which applies to paths in .

Lemma 3: In , the probability for a path of length to be
closed is less than or equal to , where is the probability
that an arbitrary edge is closed.

Proof: Let us consider a path of length in and denote
by the set of the edges forming this path. Let

be a subset of . We clearly have that

the path is closed is closed

is closed

By construction, the event “ is closed” depends on the re-
alization of the Poisson point process in some region of the
plane, according to Definition 2. Let us call this
region. It is the rectangle shown in the middle of Fig. 7. To
compute the probability of this event, we will choose so that

, and . In this way, the set
of indicator random variables , taking value 1 if
with is closed and 0 otherwise, with , are i.i.d vari-
ables with . Therefore

is closed with card
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Fig. 7. Edge a and its dependency region R(a). Around a, we drew all edges
that have a nondisjoint dependency region with R(a).

We construct as follows: we take the first edge of the path
. This edge is the center of a certain region of the

plane, as defined above and shown in Fig. 7. Then we follow the
path until we find an edge such that , and
add it to . We iterate this last step until we reach the end of
the path.

In order to find an upper bound on ,
we need a lower bound on . In other words, we
need to know how many edges are skipped until we find the
next element of in our construction scheme. To answer this
question, we will simply count the number of edges in that
satisfy . We see on Fig. 7 that there are 70
of them. We are therefore sure that a path starting with Edge
cannot go through more than 70 edges without visiting an edge

such that . Since the path has edges,
is thus bounded by

We have finally obtained the upper bound we were looking for,
which reads

the path is closed is closed

We can now prove the theorem.
Theorem 3: If , the probability that

there exists an infinite open path in starting at the origin is
strictly greater than zero.

Proof: We will prove this theorem by contradiction: as-
sume that there exists no infinite open path starting at the origin

in . Then there exists a closed circuit in that surrounds the
origin. In the sequel, we will find an upper bound to the proba-
bility that such a circuit exists. The result is then deduced from
the following equation:

an infinite open path starting at the origin in

a closed circuit in that surrounds the origin

(14)

We know from [19, pp. 15–18] that the number of cir-
cuits of length in that surround the origin is bounded from
above by

Among these circuits, some are closed; we denote by
the number of closed circuits of length in that surround the
origin. Using Lemma 3, we find a bound to the probability that
this number is nonzero

Consequently

The above expression is strictly smaller than one if

in which case we can conclude using (14) that

an infinite open path starting at the origin in

From Theorem 3, we can deduce the following corollary by
ergodicity.

Corollary 1: If , there exists a.s. an
infinite open cluster in .

Step 3: reverse mapping and percolation on the plane
Now that there is an infinite open cluster in with positive

probability, we still need to prove that this yields the existence of
an infinite component in the original graph for suitable
values of and , as defined in Lemma 2. Lemmas 4 and 5 es-
tablish this link between the discrete and the continuous models.

Lemma 4: If a square is populated, and if the total inter-
ference level at any point of the square is less than or equal to

, then all points in the square belong to the same cluster.
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Fig. 8. Open path inL (in bold) and its associated sequence of squares (whose
sides are edges of L).

Furthermore, if two adjacent squares fulfill the same conditions,
all points inside these squares belong to the same cluster.

Proof: We consider two adjacent subsquares, and an arbi-
trary point in each of them (we know that we can find at least
one point in each subsquare, because the square is populated).
Because both adjacent subsquares have a side of length ,
the distance between these two points is at most . The
signal-to-interference ratio is then

where the second inequality follows from (12). Thus each point
in a given subsquare is connected to all points in the adjacent
subsquares. As a result, since the square is populated, all points
in the whole square are connected together.

The second part of the lemma is quite obvious. If two squares
are adjacent, we simply consider two adjacent subsquares, one
in the first square, one in the other one, and apply the same
arguments.

Lemma 5: If there exists an infinite open path in , then
there exists an infinite cluster in the continuous model.

Proof: We consider an infinite open path in . Remember
that each vertex of is located at the center of a square of

(see Fig. 8). Along an open path of , at each vertex, we
find a square that fulfills the conditions given in Definition 2.
Let us consider one of these squares, which we will denote by

. As the attenuation function is zero for distances above ,
all interferences in come from nodes located in and its
direct neighbors (adjacent squares and diagonal neighbors). As
the edge is open, according to Definition 2, the total number of
points in this neighborhood is less than or equal to . The
total interference contribution is thus smaller than . We
can then apply Lemma 4 and conclude that all points in are
connected together.

Moreover, as two consecutive squares along the infinite open
path are adjacent, the sequence of squares form an infinite
cluster of connected points.

Combining Lemmas 5, 2 and Corollary 1, we have established
Theorem 2.

D. Asymptotic Results for Large

In Section III-C, we proved that if and ,
the network contains an infinite cluster. The function is
thus a lower bound on the actual threshold . We observe
furthermore in (13) that for some constant .

In this section, we look for an upper bound on . Again,
we have to assume here that is decreasing with respect to

and satisfies (9).
We construct a new square lattice over the plane, similar

to the previous ones, but with edge length instead of . We
assume also that the origin of is located at the center of a
square of .

Lemma 6: If there are more than

(15)

nodes inside a square of , all nodes in this square are isolated.
Proof: Pick any node inside the square, and another node

(inside or outside the square). As is bounded from above
by , we have

Because of (9), we also have

Therefore, we have

The above expression is clearly smaller than when
, which implies that Node is isolated.

We can now define a site percolation model by declaring
a square of open if it contains at most

nodes. It is declared closed otherwise.
It is clear that each square is open or closed independently from
the others. Therefore, the origin is a.s. surrounded by a closed
circuit (i.e., a circuit formed by closed squares) in if

a square is closed (16)

where is the critical site percolation threshold, whose
value is around 0.59 (see [19, p. 56]). The number of nodes
inside a square is a Poisson random variable of parameter

. Lemma 1 implies that if

(17)
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Fig. 9. Chain of closed squares separating the two nodes.

we have

a square is closed

which means that above a certain value of , Inequality (16)
holds.

Inequality (17) is verified if

(18)

which can be recast as

When , a sufficient condition is

(19)

We thus proved that for sufficiently high densities, if
, the origin is a.s. surrounded by a closed circuit in the

discrete model. We now have to prove that in this case, the origin
belongs to a finite cluster in the continuous model.

Because of Lemma 6, when a site is closed, the square cen-
tered on this site contains only isolated nodes. Therefore, in the
continuous model, when , the origin is surrounded by
a chain of closed squares with no link inside. To make sure that
the origin belongs to a finite cluster, we have to prove that no
link can cross this chain.

Let us consider two nodes and , such that Node is lo-
cated inside an open square surrounded by the chain, and Node

is also located inside an open square, but on the other side of
the chain. As these nodes are separated by the chain of closed
squares, the distance between them is larger
than .

We consider two cases. First, we assume that . In
this case we construct the disk of radius centered on and
the disk of radius centered on , as depicted in Fig. 9. As
the chain of closed squares separates and , there exists at

least one closed square that has a nonempty intersection with
the segment . Moreover, the shortest distance between

and is

As the diagonal of has length , cannot have a
nonempty intersection with and with at
the same time. Therefore .

Furthermore, we count the number of nodes inside three dif-
ferent subsets of

As is a closed square, we have by assumption
. This implies that either

or

Let us assume without loss of generality that the first inequality
holds. There are thus at least nodes located inside . As
has radius , and because of (9), the signal received by Node
from each of these nodes is at least . The SINR
at Node received from Node is thus upper-bounded by

Plugging the value of into this expression, we verify that

which means that no link between Node and Node exists.
The same is true if .

Let us now address the case where (the case
appears with probability zero). In this case, we draw the same
disks and , but with radius . There exists at least one
square of the chain such that . We define ,
and in the same way as above. Thus, either
or .

Let us assume without loss of generality that .
This implies that there are at least nodes inside . Node is
by construction on the border of . Therefore, all these nodes
are closer to Node than Node . As we assumed that is
decreasing, the SINR at from Node is bounded above by

From (9) and (15), we verify that
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Fig. 10. Illustration of the bounds on the supercritical domain.

and therefore

meaning that the link cannot exist.
Consequently, we have proved that if the origin is surrounded

by a chain of closed squares in the discrete model, then the
continuous model is subcritical. We conclude that when (19)
holds, the network is subcritical. We have thus obtained an upper
bound on the critical value by proving that if ,
the origin belongs a.s. to a finite cluster. As both upper and
lower bounds on the critical threshold have this form, we have
obtained the asymptotic behavior of the threshold for

.
Theorem 4: For tending to infinity, the critical value of

has the following asymptotic behavior

Fig. 10 illustrates the typical shape of the function .
Note that if does not fulfill Condition (9), the asymptotic
behavior may be dramatically different. For example, take

, which is not bounded from above for small
. In this case, increasing by a factor is equivalent to

dividing by a factor . It follows that in this case
is always an increasing function. Fig. 11 illustrates the case
where .

IV. TDMA APPROACH

We can conclude, from the previous sections, that unless
can be made sufficiently small, long-range communications are
impossible if we allow all nodes to emit simultaneously, because
the graph may remain in a subcritical phase for all .
Having a small requires nodes to use CDMA for transmission,
which can be complex to implement in an ad hoc network (node
synchronization may be difficult in the presence of mobility).
An alternative is to avoid having all nodes emitting at the same

Fig. 11. Critical value of  for an unbounded attenuation function L(xxx) =
kxxxk . In this case, the percolation threshold is an increasing function of the
node density. [The parameters of this simulation are � = 1, N = 10 and
P = 10 8 i].

time, and thus to use a TDMA scheme. We assume that each
time interval is divided into time slots. An optimal TDMA
scheme poses also a quite complex challenge to assign the slots
to each node, which is clearly beyond the scope of this paper.
In this section, we keep the strategy suboptimal but very simple
and totally decentralized: each node picks randomly a number

between 1 and , and only emits during the th time slot. All
nodes are listening at all times. We also assume, for the sake
of simplicity, that all nodes emit with the same power . We
denote by the graph obtained by superposing the
graphs derived for each slot.

In the following theorem, we propose an extension of The-
orem 2 that proves that with fixed , one can reach the super-
critical phase by choosing large enough.

Theorem 5: For a fixed , if the isotropic attenuation function
verifies assumptions (8) and (9), then there exist

and a function such that

• for all
• if and , there exists a.s. an infinite

connected component in the graph .

We prove Theorem 5 by following the same steps as Theorem
2, except a few modifications. We first need to change a little
bit the mapping. The Poisson process is now decomposed in
subprocesses, formed by the points emitting in each of the time
slots. Because these time slots are picked independently for each
node, each subprocess is Poisson with intensity . Definition
2 is then replaced by the following one:

Definition 5: An edge of is said to be open if the fol-
lowing conditions are fulfilled.

• both squares adjacent to are populated, and
• the total number of points of each subprocess located in

the two squares adjacent to and all their direct neighbors
is less than or equal to

With this new definition, the probability that an edge is open
needs to be recomputed. Lemma 2 is thus replaced by the
following.
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Lemma 7: For any , there exists and
such that

and

Proof: We have

an edge of is closed

no point in a subsq. of surf.

subprocess exceeds pts

in a rectangle of surf.

(20)

where is a Poisson random variable of parameter .
The first term can be obviously made arbitrarily small by
choosing large enough. Let us call the smallest value of
such that the first term is smaller than .

For the second term, as , take the case as an
upper bound. Note that in this way, we obtain a bound that is
independent from

The latter expression tends to zero when increases. There ex-
ists therefore such that implies

.
As both terms of (20) can be made smaller than , we

proved that .
The remainder of the proof of Theorem 5 is constructed from

the same arguments as in Section III-C.
By applying this TDMA strategy, we actually reduce the

number of interfering nodes by a factor of . It is therefore
interesting to compare the connectivity of the graph obtained
by superposing the graphs derived for each slot, to that of
the original graph obtained when all nodes emit at the
same time. Let us introduce the following notations for the
interference contribution, which is another shot noise, at each
time slot

where , is the set of the indexes of the nodes
that emit during the th time slot. It follows immediately that

The expected values of the interference term (1) in the TDMA
scheme is times lower than in the regular scheme

Fig. 12. Comparison between the critical threshold in the TDMA case
(n = 4 time slots) and in the original model with all nodes allowed to emit
simultaneously. To make comparison easier, the critical value in the second case
has been multiplied by 4. [Simulation parameters are the same as in Fig. 3].

We computed by simulation the critical threshold
in the TDMA scheme. Fig. 12 presents the results, compared
to those of the regular scheme. As expected, we observe that
the threshold in the TDMA scheme is about times higher.
This means that introducing an -time slots TDMA system is
somehow equivalent to dividing by .

Finally, if the attenuation function has the form
, which is not bounded, we have observed in [21] that

the TDMA scheme performs not only as well as the CDMA
scheme with divided by , but even much better, especially
for large values of .

V. CONCLUSION

We have studied the connectivity of Poisson signal-to-inter-
ference ratio graphs (STIRG) where represents the
imperfect orthogonality of the codes used in CDMA, or is set to
1 in a narrowband system.

The STIRG is radically different from the graph obtained
in the Boolean Model, where : the node degree is now
bounded (Theorem 1), and the existence of an edge between
two nodes depends not only on the location of these two nodes,
but on the location of all others. We have shown that if is too
large, all clusters are almost surely finite. Our main result is that
percolation, and thus long range communications, are however
still possible if is small enough, but nonzero (Theorem 2). If
this had not been the case, it would have been a serious imped-
iment for multiple hops large scale ad hoc networks.

We have also proven that when the node density tends to
infinity, the critical value decreases as provided the
attenuation function is bounded from above and from below in a
small neighborhood of the origin. The main result of this paper
is a first picture of the shape of the region in the plane
where percolation occurs.

As a small value of requires very efficient and thus complex
CDMA codes, an alternative is to use a TDMA system, where
each node emits during 1 slot every time slots. We showed that
such a system led to a connectivity similar to the original scheme
with an orthogonality factor . We proved furthermore that if
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is large enough, one can make the graph reach the supercritical
phase by choosing sufficiently large.

The main restriction in Theorems 2 and 5 is the requirement
(8) that the attenuation function has a finite support. This
assumption was used in the proof to find an infinite sequence
of open independent edges in the lattice , and to prove bond
percolation on this lattice. Our simulations show however that
this assumption is not necessary.
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