Measurement of the Force-Velocity Relation for Growing Microtubules

Marileen Dogterom* and Bernard Yurke

Forces generated by protein polymerization are important for various forms of cellular motility. Assembling microtubules, for instance, are believed to exert pushing forces on chromosomes during mitosis. The force that a single microtubule can generate was measured by attaching microtubules to a substrate at one end and causing them to push against a microfabricated rigid barrier at the other end. The subsequent buckling of the microtubules was analyzed to determine both the force on each microtubule end and the growth velocity. The growth velocity decreased from 1.2 micrometers per minute at zero force to 0.2 micrometer per minute at forces of 3 to 4 piconewtons. The force-velocity relation fits well to a decaying exponential, in agreement with theoretical models, but the rate of decay is faster than predicted.

It has long been speculated that the assembly and disassembly of cytoskeletal filaments, such as microtubules (MTs) and actin, can generate forces that are important for various forms of cellular motility. Examples include the motions of chromosomes during mitosis that depend on both the assembly and disassembly of MTs (I, II), actin-dependent motility such as cell crawling and the propulsion of Listeria through a host cell (3), and possibly the MT-dependent transport of intracellular membranes (4).

To understand the role of force production by protein polymerization in vivo, it is important to determine the maximum forces that can be generated and the effect of an opposing force on the assembly dynamics of...
a protein polymer. In the case of MTs, there is clear experimental evidence that both their assembly (4–6) and disassembly (7) can generate force, but limited quantitative data are available on the actual magnitude of these forces. In this respect, the study of force production by the assembly of cytoskeletal filaments, or by protein aggregation in general, clearly lags behind the study of force production by motor proteins, for which a number of quantitative in vitro assays have been developed (8).

We created an experimental system in which growing MTs were made to push against an immobile barrier, and analyzed the subsequent buckling of the MTs to study the forces that were produced; the force calibration was provided by a measurement of the flexural rigidity of the MTs (9). We etched arrays of long channels (30 μm wide, 1 μm deep) in glass cover slips (10); the walls of these channels were used as barriers. Using materials with different etch rates, we produced walls with an “overhang” that prevented the MTs from sliding upward along the wall (Fig. 1, A and B). Short stabilized MT seeds, labeled with biotin, were attached to the bottom of the streptavidin-coated channels, and MTs were allowed to grow from these seeds (Fig. 1A) (11). Because the seeds were randomly positioned in the channels, the MTs approached the walls from different angles and distances. We scanned our samples for MTs that were growing roughly perpendicular to the walls and observed them as their growing ends approached the walls (Fig. 1, C and D) (12).

In many cases, the MT end was caught underneath the overhang on the wall, forcing the MT to encounter the wall. After encountering the wall, most MTs continued to increase in length, indicating a continuing addition of tubulin dimers at the growing MT ends. The virtually incompressible (9) MTs were observed to bend in two different ways to accommodate this continuing increase in length. In some cases, the MT end moved along the side of the wall while the MT bent roughly perpendicular to its original direction [these MTs were not followed any further (13)]. In other cases, the MT end, probably hindered by small irregularities in the shape of the wall, did not move along the side of the wall, but encountered the wall. This caused the MT to buckle with its end pivoting around a fixed contact point with the wall (Fig. 1, C and D). The force exerted by these MTs on the wall was large enough to overcome the critical buckling force (14).

After the initiation of buckling, both the magnitude and the direction of the force f exerted by each MT on the wall (and therefore by the wall on the MT) were solely determined by the elastic restoring force of the buckled MT [initially this force should be roughly equal to the critical buckling force (14)]. A considerable component \(f_x \) of this force was directed parallel to the direction of elongation of the MT, thereby opposing its growth (Fig. 2). Assuming that a MT behaves as a homogeneous elastic rod, the magnitude of the critical buckling force \(f_c \) normalized by the flexural rigidity \(\kappa \) of the MT is given by \(f_c/\kappa = A/L^2 \), where \(L \) is the length of the MT. The prefactor \(A \) depends on the quality of the clamp provided by the seed: \(A \approx 20.19 \) (the maximum value) for a perfect clamp that fixes the initial direction of the MT exactly in the direction of the contact point with the wall, \(x_L \), and \(f_c \) directed parallel to the axis of the MT. Scale bar, 5 μm.

![Fig. 1. In vitro assay to study the force exerted by a single growing MT. (A) Schematic representation of the experiment (shown in perspective from a side view; not to scale). A biotinylated MT seed (black), attached to the streptavidin-coated bottom of a channel (indicated by black dots), templates the growth of a freely suspended MT (gray). An overhang was created on the walls of the channel to prevent the MT from sliding upward after encountering the wall. (B) Electron microscopy image showing a wall with overhang (scale bar, 1 μm). (C and D) DIC images of two buckling MTs (top view) (12). The upper panels show a MT (arrowhead in top left of C) growing from a randomly positioned seed. The lower panels are snapshots (separated by 1 min) of each MT after the growing end has encountered the wall. Because of the contrast produced by the overhang on the walls (which vary in size between samples), the last few micrometers of the MTs cannot be seen. The sharp changes in contrast indicate the actual locations of the walls. Scale bar, 10 μm.][2]

![Fig. 2. Analysis of MT buckling shapes (15). Open squares show the hand-recorded shapes of the MT shown in Fig. 1D at 12-s intervals (shapes were analyzed at 2-s intervals). The dashed line on the left indicates the position of the seed (\(x_L \)). The dashed line on the right indicates the position of the wall (\(x_w \)) as judged by eye from the images (Fig. 1D). The solid lines show fits to the shape of an elastic rod. One (at the top) is shown as an example. We assumed that the MT was held at its seed and that a force \(f \) was applied at the contact point of the MT with the wall (\(x_w \)). This contact point remained fixed in time and was chosen to produce the best combined fit over the entire time sequence (this produces a value of \(x_w \) very close to \(x_L \)). We further assumed that the MT was free to pivot around the contact point, but we made no assumptions about the quality of the clamp provided by the seed. The fits produced the magnitude and the direction of the force \(f \) normalized by the flexural rigidity \(\kappa \) of the MT at each time point, as well as the length of the MT given by the arc length between \(x_L \) and \(x_w \). MT growth is opposed by \(f_L \), the component of the force that is directed parallel to the axis of the MT. Scale bar, 5 μm.][3]
Fig. 4 is labeled with values for the normal two limiting curves. behaved in an intermediate way and, as expected, the forces obtained from the fits fall between these MTs to the glass barrier. The lower caused by the proximity of the end of the discussed above); as expected, we found that the restoring forces were between these limits, which validated our assumption that MTs behave as homogeneous elastic rods.

In Fig. 4 the average growth velocity \(v \) is plotted as a function of force (the force-velocity curve) for all data combined (18). This plot shows that the growth velocity approaches the velocity of a freely growing MT \(\sim 1.2 \) \(\mu \)m \(\text{min}^{-1} \) at low force, and decreases to \(\sim 0.2 \) \(\mu \)m \(\text{min}^{-1} \) as more and more force is applied. This implies that the reduction in growth velocity is controlled by the applied force and is not simply caused by the proximity of the end of the MT to the glass barrier. The lower \(x \) axis in Fig. 4 is labeled with values for the normalized force because this is the parameter obtained from our fits. An independent measure of \(\kappa \) is needed to obtain values for the absolute force. The flexural rigidity of pure MTs has been measured using various methods; the values reported range over an order of magnitude, 4 to 40 pN \(\mu \)m\(^2\) (6, 19, 20). We used an analysis of the thermal fluctuations to measure the rigidity of our MTs (21) and found values at the upper end of this range: 34 \(\pm \) 7 pN \(\mu \)m\(^2\). This means that the largest forces in Fig. 4 are on the order of 4 pN (the upper \(x \) axis is labeled with absolute values of force derived from our measurement of the flexural rigidity).

The force-velocity relation in Fig. 4 can be compared with theoretical predictions. In the absence of force, the growth velocity is given by the difference in the rate of addition and removal of subunits, \(v = \delta (\alpha c - \beta) \), where \(\delta \) is the added MT length per dimer \((\delta = 8/13 \) nm for an MT with 13 protofilaments), \(\alpha c \) is the rate of subunit addition (the on-rate), \(c \) is the tubulin concentration, and \(\beta \) is the rate of subunit removal (the off-rate). In principle, both \(\alpha \) and \(\beta \) may be affected by a force that opposes elongation of the MT \(f_c \) (in our case). Thermodynamic arguments (22) show that their ratio (which gives the critical tubulin concentration \(c_{cr} \)) must increase with force according to

\[
c_{cr}(f_c) = \frac{\beta(f_c)}{\alpha(f_c)} = \frac{\beta(0)}{\alpha(0)} \exp(f_c / k_B T) \tag{1}
\]

where \(k_B \) is the Boltzmann constant and \(T \) is temperature. This leads to

\[
v(f_c) = \delta \alpha \exp(-q f_c / k_B T) c - \beta \exp((1 - q) f_c / k_B T) \tag{2}
\]

where \(q \) may take any value between 0 and 1 (possibly in a force-dependent way). The stall force \(f_s \) (the force at which the velocity becomes equal to zero) is independent of \(q \) and is given by

\[
f_s = \frac{k_B T}{\delta} \ln \frac{\alpha c}{\beta} \tag{3}
\]

A similar result is obtained if the growth process is pictured as a “Brownian ratchet” (23). In this more mechanistic view, the on-rate depends on the force-dependent probability that thermal fluctuations (in the position of the MT end in this case) allow for a gap between the MT end and the barrier that is large enough for a dimer to attach to the growing MT end (under optimal conditions, the size of this gap along the direction of MT growth is equal to \(\delta \), the added length per dimer). If the force is independent of the size of the gap and the time required to add a dimer is long relative to the time required for the MT end to diffuse over a distance \(\delta \), then

\[
v(f_c) = \delta \alpha \exp(-f_c / k_B T) c - \beta \tag{4}
\]

This relation assumes that the effect of force on the off-rate can be neglected. We performed a weighted least-squares fit of the data in Fig. 4 to both the function \(v(f_c) = A - B \exp(C f_c / \kappa) \) (assuming that only the off-rate is affected or \(q = 0 \)) and the function \(v(f_c) = A \exp(-C f_c / \kappa) - B \) (assuming that only the on-rate is affected or \(q = 1 \)), where \(A, B, \) and \(C \) are fitting parameters. In the first case, the best fit \((\chi^2 = 1.5) \)

![Fig. 3. MT length and applied force obtained from the analysis of MT buckling shapes such as shown in Fig. 2. (A) For five different MTs, the length \(L \) as a function of time (at 2-s intervals) is shown both before and after contact with the wall (solid symbols). A segment of time is missing in each case, during which the end of the growing MT was obscured by the presence of the overhang on the wall. Open symbols show the parallel component of the normalized force, \(f_c / \kappa \). The lower left curve corresponds to the MT shown in Figs. 1D and 2. The upper right curve corresponds to the MT shown in Fig. 1C. (B) Total normalized force, \(f_c / \kappa \), as a function of MT length for all MT shapes analyzed \((n = 1316) \). Each point corresponds to one MT shape. The dashed lines indicate the theoretical length dependence of \(f_c / \kappa \) in two limiting cases; \(f_c / \kappa = 20.19 f_s / k_B T \) for a MT with a seed that acts as a perfect clamp (upper curve) and \(f_c / \kappa = \pi^2 L^2 / 2 \) for a MT with a seed that acts as a perfect hinge (lower curve). In the experiments, the seeds behaved in an intermediate way and, as expected, the forces obtained from the fits fall between these two limiting cases.

![Fig. 4. Average MT growth velocity as a function of force. Velocity and force were obtained from combining data such as shown in Fig. 3A (18). The lower \(x \) axis gives the value of the normalized force \(f_c / \kappa \). The upper \(x \) axis gives the absolute value of the force, based on our measurement of the flexural rigidity. The solid line gives the best fit of the data to an exponential decay.]
produced extremely large values for the parameters A and B, and a value for C nearly equal to zero (corresponding to almost a straight line). Experimental results show, however, that B is very small in the absence of force (25). Fixing the maximum value of B at $0.5 \mu m\text{min}^{-1}$ produced a fit that was much worse ($\chi^2 = 2.5$), and smaller values of B produced fits that were even worse. Consequently, it is unlikely that the only effect of force is an increase in the off-rate. In the second case, a more reasonable result (indicated by the solid line in Fig. 4) was obtained: $\chi^2 = 0.43$ with $A = 1.13 \pm 0.11 \mu m\text{min}^{-1}$, $B = -0.08 \pm 0.12 \mu m\text{min}^{-1}$, and $C = 18 \pm 4 \mu m^2$. This indicates the possibility that the only effect of force is a decrease in the on-rate (26). Although B is expected to be small, its true value should be greater than zero. Because of the uncertainty in B, it is impossible to extract a good estimate for f_0 from this fit.

The value predicted for the parameter C is equal to $k \delta f_0\tau$, which, given our measured value for k, corresponds to $5 \pm 1 \mu m^2$. This is smaller than the value obtained from the fit for $q = 1$, $18 \pm 4 \mu m^2$, which implies that the growth velocity decreases faster with force than would be expected from theoretical arguments [this discrepancy becomes even larger if we assume a smaller value for q (26)]. The theoretical rate corresponds to an optimum situation in which the free energy available from the assembly of all 13 protofilaments is converted into mechanical work. Despite the relatively large experimental error bars, our data indicate that this is not the case under our conditions. It may be that, if the end of a growing MT is not blunt but pointed, only a few protofilaments are supporting the load. If this is pictured as a ratchet, gaps closer to the size of a full dimer may be required to squeeze in the next subunit, which would increase the predicted value for C. Also, growth may occur through the closure of a sheet of protofilaments (17), which could make the gap size needed for this process even larger than the size of a dimer.

We have presented a quantitative method for studying the force that can be produced by a single growing MT in interaction with a nonspecific glass barrier. Considering that under these conditions less force is produced than is theoretically possible, a logical next step would be to study whether the interaction of the growing MT end with a specific attachment site modifies this result. In principle it should be possible to coat the walls [or simply a pattern of lines (27)] with isolated chromosomes (7) or kinetochore constructs (28) and repeat the same experiment. This system can also be used to study the effect of force on the catastrophe frequency of MTs (the probability of switching from the growing to the shrinking state). In our experiments, growth often persisted after the initiation of buckling, which implies that an opposing force does not markedly increase the catastrophe frequency. Quantitatively verifying this possibility would require the observation of many catastrophe events both before and during the application of force.

REFERENCES AND NOTES

10. Clean cover slips were coated with photoresist. Then, a pattern of 25-m-wide lines, separated by 30 m, was made using standard photolithography techniques (29). A 0.3-m-layer of SO was vapor-deposited under vacuum (5×10^{-4} torr), followed by a 20-m-layer of chromium. The remaining photoresist was stripped in acetone and the samples were immersed in buffered hydrolitic acid for 7 min. This produced channels 1 m deep and 30 m wide, with "overhangs" on the walls resulting from the slow etching of SO as compared with glass (see Fig. 1B). The remaining chromium was stripped and the samples were sealed with paraffin and held at a constant temperature (25). 12. Samples were viewed by video-enhanced differential interference contrast (DIC) microscopy (Nikon Diaphot with Paltelke charge-coupled device camera). The microscope was equipped with a water-cooled temperature regulated warming stage (22°C) and the condenser was used without oil to keep the sample temperature at 20°C and the wall temperature at the sample temperature (22°C).
sensitively overestimating the velocities.

21. For 12 MTs, each over a 2-min interval, we measured the thermal fluctuations in the distance d between the middle of the MT and the line connecting the two ends of the MT; one end given by the position of the seed and the other end given by the position of the MT at length L, corresponding to the initial length of the MT (thus eliminating any sensitivity to changes in MT length during the measurement). An MT of length L can be viewed as two rigidly linked springs of length L/2, each with spring constant 2k/2L. The total spring constant of this system is given by 4k/kL2. Using the equipartition theorem (20), the variance in d is connected to the flexural rigidity by

\[\sigma^2 = 4kT L^2 \text{ } \text{(7)} \]

Using this formula, we found \(\kappa = 34 \pm 7 \text{ } \mu \text{m}^2/\text{min} \) (mean \pm SD). Errors in this number could arise from measurement errors in the position of the ends and the middle of the MT. This is especially true when measuring short MTs, in which case noise may lead to an underestimation of the rigidity. The 12 MTs varied from 10 to 20 \(\mu \text{m} \) in length. No length dependence of \(\kappa \) was apparent over this range, but MTs shorter than 10 \(\mu \text{m} \) produced lower values for \(\kappa \).

24. The elastic restoring force of a MT that is slightly buckled against an immobile barrier is roughly equal to \(f_d \), (14). This is still true when the end of the MT moves a small distance (relative to the length of the MT) away from the barrier because of thermal fluctuations. The force driving the gap between the MT end and the barrier to zero is therefore independent of the size of the gap. To leave a gap of size \(s \) in the direction of MT growth, the MT end must be displaced by a distance \(s \cos \psi \) against the buckling force \(f_d \), where \(\psi \) is the angle between the force and the growth direction of the MT. This is equivalent to saying that the MT end must be displaced by a distance \(f_d \) that is directed parallel to the axis of the MT. The contact angle with the wall does not play any role because the direction of the force is determined by the shape of the nucleated MT, not by the normal to the wall. The Brownian ratchet model for a MT that grows by bending perpendicular to its axis is described in A. Mogilner and G. Oster, Biophys. J. 71, 3030 (1996).

26. This does not exclude, of course, the possibility that force affects both rates. For instance, a fit to the function

\[v(f_d) = A \exp(-0.5C(f_d)/B - B \exp(0.5C(f_d)/B) \text{ (8)} \]

\((s = 0.5) \) produces a reasonable result as well: \(x^2 = 0.43 \pm 0.20 \text{ } \mu \text{m}^2/\text{min} \), \(B = -0.003 \pm 0.010 \text{ } \mu \text{m}^2/\text{min} \), and \(C = 34 \pm 4 \text{ } \mu \text{m}^2/\text{min} \). Note, however, that \(B \) is much smaller than \(A \), implying that the effect of force is in any case dominated by a decrease in the rate, a result that is obtained for every positive value of \(q \).

30. We thank T. E. Holy, S. Leibler, and K. Svoboda for discussions; K. Baldwin, T. E. Holy, and A. N. Parelgil for technical help; B. Shraiman and K. Svoboda for critical reading of the manuscript; and S. Leibler for use of his lab to prepare tubulin and MT seeds.

17 June 1997; accepted 17 September 1997

IKK-1 And IKK-2: Cytokine-Activated IkB Kinases Essential for NF-\(\kappa \)-B Activation

Frank Mercurio,* Hengyi Zhu, Bron W. Murray, Andrej Shevchenko, Brydon L. Bennett, Jianwu Li, David B. Young, Miguel Barbosa, Matthias Mann, Anthony Manning, Anjana Rao

Activation of the transcription factor nuclear factor kappa B (NF-\(\kappa \)-B) is controlled by sequential phosphorylation, ubiquitination, and degradation of its inhibitory subunit IkB. A large multiprotein complex, the IkB kinase (IKK) signalsome, was purified from HeLa cells and found to contain a cytokine-inducible IkB kinase activity that phosphorylates IkB-\(\alpha \) and IkB-\(\beta \). Two components of the IKK signalsome, IKK-1 and IKK-2, were identified as closely related protein serine kinases containing leucine zipper and helix-loop-helix protein interaction motifs. Mutant versions of IKK-2 had pronounced effects on RelA nuclear translocation and NF-\(\kappa \)-B-dependent reporter activity, consistent with a critical role for the IKK kinases in the NF-\(\kappa \)-B signaling pathway.

Transcription factors of the NF-\(\kappa \)-B Rel family are critical regulators of genes that function in inflammation, cell proliferation, and apoptosis (1). The prototype member of the family, NF-\(\kappa \)-B, is composed of a dimer of p50 (NF-\(\kappa \)-B\(\alpha \)) and p65 (RelA) (2). NF-\(\kappa \)-B is found in the cytoplasm of resting cells but enters the nucleus in response to various stimuli, including viral infection, ultraviolet irradiation, and proinflammatory cytokines such as tumor necrosis factor \(\alpha \) (TNF-\(\alpha \)) and interleukin-1 (IL-1) (1, 3).

Activation of NF-\(\kappa \)-B is controlled by an inhibitory subunit, IkB, which retains NF-\(\kappa \)-B in the cytoplasm (4). NF-\(\kappa \)-B activation requires sequential phosphorylation, ubiquitination, and degradation of IkB\(\alpha \) as well as subsequent exposure of a nuclear localization signal on NF-\(\kappa \)-B (5). Ser176 and Ser180 of IkB\(\alpha \) and the corresponding Ser19 of IkB\(\beta \) and Ser23 of IkB-\(\beta \) represent critical phosphorylated residues (6). The IkB kinase shows a high degree of specificity for these residues, because an IkB-\(\alpha \) variant in which Ser12 and Ser16 were substituted by Thr (S32T, S36T) showed much reduced phosphorylation and degradation in stimulated cells and interfered with endogenous NF-\(\kappa \)-B activation (6).

To identify the IkB kinase responsible for the initial critical step of NF-\(\kappa \)-B activation, we fractionated whole-cell extracts (WCEs) from TNF-\(\alpha \)-stimulated HeLa cells by standard chromatographic methods (7). We assayed IkB kinase activity in each fraction by phosphorylating glutathione-S-transferase (GST)-IkB-\(\alpha \) (1-54) or GST-IkB-\(\beta \) (1-44) (8). Kinase specificity was established by using (S32T, S36T) mutant GST-IkB-\(\alpha \) (1-54) [GST-IkB-\(\alpha \) (1-34; S32T, S36T), and GST-IkB-\(\beta \) (1-44), in which Ser19 and Ser23 were mutated to Ala [GST-IkB-\(\beta \) (1-44; S19A, S23A)] (8). IkB kinase activity was not observed in unstimulated cell extracts but was strong in cells stimulated for 5 to 7 min with TNF-\(\alpha \) (9). Gel-filtration chromatography resolved this IkB kinase activity in a broad peak of 500 to 700 kD (Fig. 1A). In contrast to the 600-kD IkB kinase complex that was observed after treatment of cell extracts with either okadaic acid or ubiquitin-conjugating enzymes (10), the IkB kinase activity described here displayed no requirement for ubiquitination (9). We refer to the protein complex that contains the inducible IkB kinase activity as the IKK signalsome.

NF-\(\kappa \)-B activation occurs under conditions that also stimulate mitogen-activated protein kinase (MAP kinase) pathways (11). We tested preparations containing the IKK signalsome for the presence of proteins associated with MAP kinase and phosphatase cascades (Fig. 1B). The MAP kinase signalsome–1 (MEKK-1) and two Tyr-phosphorylated proteins of ~55 and ~40 kD copurified with IkB kinase activity (Fig. 1B). A protein of ~50 kD that reactivated an antibody to MAP kinase phosphatase–1 (anti–MKP-1) also copurified with the IkB kinase through several purification steps.